logo
    SEM and TEM Observation of the Surfaces of the Fine-Grained Particles Retrieved from the Muses-C Regio on the Asteroid 25413 Itokawa
    0
    Citation
    0
    Reference
    20
    Related Paper
    Abstract:
    Surface materials on airless solar system bodies exposed to interplanetary are gradually changed their visible to near-infrared reflectance spectra by the process called space weathering, which makes the spectra darker and redder. Hapke et al. proposed a model of weathering: vapor deposition of nanophase reduced iron (npFe(sup 0)) on the surfaces of the grains within the very surface of lunar regolith. This model has been proved by detailed observation of the surfaces of the lunar soil grains by transmission electron microscope (TEM). They demonstrated that npFe(sup 0) was formed by a combination of vapor deposition and irradiation effects. In other words, both micrometeorite impacts and irradiation by solar wind and galactic cosmic ray play roles on the weathering on the Moon. Because there is a continuum of reflectance spectra from those of Q-type asteroids (almost the same as those of ordinary chondrites) to those of S-type asteroids, it is strongly suggested that reflectance spectra of asteroids composed of ordinary chondrite-like materials were modified over time to those of S-type asteroids due to weathering. It is predicted that a small amount of npFe(sup 0) on the surface of grains in the asteroidal regolith composed of ordinary chondrite-like materials is the main agent of asteroidal weathering.
    Keywords:
    Space weathering
    Regolith
    Micrometeoroid
    Ordinary chondrite
    S-type asteroids are believed to be parent bodies of ordinary chondrites. However, the reflectance spectra of S-type asteroids are different from those of ordinary chondrites. This spectral mismatch is strongly considered as a result of space weathering, where high-velocity dust particle impacts should change the optical properties of the uppermost regolith surface of asteroids. To simulate space weathering by impact heating of dust particles, we irradiated nanosecond pulse laser beam onto planetary surface materials, whose pulse duration and energy rate are comparable with those of real dust impacts. The laser-irradiated samples show optical changes similar to that by space weathering, and contain nanophase metallic iron particles considered as the essential cause of space weathering. After laser-irradiations, we observed the samples by an Electron Spin Resonance (ESR) to perform quantitative analysis of nanophase metallic iron particles. We report the first description that the quantities of nanophase metallic iron particles in olivine samples increase at higher space weathering degree.
    Space weathering
    Regolith
    Ordinary chondrite
    Particle (ecology)
    Citations (21)
    Abstract— Using new techniques to examine the products of space weathering of lunar soils, we demonstrate that nanophase reduced iron (npFe 0 ) is produced on the surface of grains by a combination of vapor deposition and irradiation effects. The optical properties of soils (both measured and modeled) are shown to be highly dependent on the cumulative amount of npFe 0 , which varies with different starting materials and the energetics of different parts of the solar system. The measured properties of intermediate albedo asteroids, the abundant S‐type asteroids in particular, are shown to directly mimic the effects predicted for small amounts of npFe 0 on grains of an ordinary chondrite regolith. This measurement and characterization of space weathering products seems to remove a final obstacle hindering a link between the abundant ordinary chondrite meteorites and common asteroids.
    Space weathering
    Regolith
    Ordinary chondrite
    Albedo (alchemy)
    Lunar soil
    Space weathering alters the spectral properties of airless body surface materials by redden-ing and darkening their spectra and attenuating characteristic absorption bands, making it challenging to characterize them remotely [1,2]. It also causes a discrepency between laboratory analysis of meteorites and remotely sensed spectra from asteroids, making it difficult to associate meteorites with their parent bodies. The mechanisms driving space weathering include mi-crometeorite impacts and the interaction of surface materials with solar energetic ions, particularly the solar wind. These processes continuously alter the microchemical and structural characteristics of exposed grains on airless bodies. The change of these properties is caused predominantly by the vapor deposition of reduced Fe and FeS nanoparticles (npFe(sup 0) and npFeS respectively) onto the rims of surface grains [3]. Sample-based analysis of space weathering has tra-ditionally been limited to lunar soils and select asteroidal and lunar regolith breccias [3-5]. With the return of samples from the Hayabusa mission to asteroid Itoka-wa [6], for the first time we are able to compare space-weathering features on returned surface soils from a known asteroidal body. Analysis of these samples will contribute to a more comprehensive model for how space weathering varies across the inner solar system. Here we report detailed microchemical and microstructal analysis of surface grains from Itokawa.
    Space weathering
    Regolith
    Lunar soil
    Citations (1)
    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.
    Space weathering
    Murchison meteorite
    Ordinary chondrite
    Regolith
    Carbonaceous chondrite
    Citations (8)
    Space weathering (SW) effects on the lunar surface are reasonably well-understood from sample analyses, remote-sensing data, and experiments, yet our knowledge of asteroidal SW effects are far less constrained. While the same SW processes are operating on asteroids and the Moon, namely solar wind irradiation, impact vaporization and condensation, and impact melting, their relative rates and efficiencies are poorly known, as are their effects on such vastly different parent materials. Asteroidal SW models based on remote-sensing data and experiments are in wide disagreement over the dominant mechanisms involved and their kinetics. Lunar space weathering effects observed in UVVIS-NIR spectra result from surface- and volume-correlated nanophase Fe metal (npFe(sup 0)) particles. In the lunar case, it is the tiny vapor-deposited npFe(sup 0) that provides much of the spectral reddening, while the coarser (largely melt-derived) npFe(sup 0) produce lowered albedos. Nanophase FeS (npFeS) particles are expected to modify reflectance spectra in much the same way as npFe(sup 0) particles. Here we report the results of experiments designed to explore the efficiency of npFeS production via the main space weathering processes operating in the asteroid belt.
    Space weathering
    Regolith
    Vaporization
    Lunar soil
    Citations (5)
    Space weathering effects on lunar soil grains result from both radiation-damaged and deposited layers on grain surfaces. Typically, solar wind irradiation forms an amorphous layer on regolith silicate grains, and induces the formation of surficial metallic Fe in Fe-bearing minerals [1,2]. Impacts into the lunar regolith generate high temperature melts and vapor. The vapor component is largely deposited on the surfaces of lunar soil grains [3] as is a fraction of the melt [4, this work]. Both the vapor-deposits and the deposited melt typically contain nanophase Fe metal particles (npFe0) as abundant inclusions. The development of these rims and the abundance of the npFe0 in lunar regolith, and thus the optical properties, vary with the soil mineralogy and the length of time the soil grains have been exposed to space weathering effects [5]. In this study, we used the density of solar flare particle tracks in soil grains to estimate exposure times for individual grains and then perform nanometer-scale characterization of the rims using transmission electron microscopy (TEM). The work involved study of lunar soil samples with different mineralogy (mare vs. highland) and different exposure times (mature vs. immature).
    Regolith
    Space weathering
    Lunar soil
    Citations (8)
    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Exposure to the solar wind results in implantation effects that are preserved in the rims of grains (typically the outermost 100 nm), while impact processes result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. These processes are collectively referred to as space weathering. A critical element in the study of these processes is to determine the rate at which these effects accumulate in the grains during their space exposure. For small particulate samples, one can use the density of solar flare particle tracks to infer the length of time the particle was at the regolith surface (i.e., its exposure age). We have developed a new technique that enables more accurate determination of solar flare particle track densities in mineral grains <50 micron in size that utilizes focused ion beam (FIB) sample preparation combined with transmission electron microscopy (TEM) imaging. We have applied this technique to lunar soil grains from the Apollo 16 site (soil 64501) and most recently to samples from asteroid 25143 Itokawa returned by the Hayabusa mission. Our preliminary results show that the Hayabusa grains have shorter exposure ages compared to typical lunar soil grains. We will use these techniques to re-examine the track density-exposure age calibration from lunar samples reported by Blanford et al. (1975).
    Regolith
    Space weathering
    Lunar soil
    Solar energetic particles
    Particle (ecology)
    Micrometeoroid
    Citations (0)