logo
    Postsynaptic BDNF-TrkB Signaling in Synapse Maturation, Plasticity, and Disease
    3
    Citation
    1
    Reference
    19
    Related Paper
    Citation Trend
    Abstract:
    Brain-derived neurotrophic factor (BDNF) is a prototypic neurotrophin that regulates diverse developmental events from the selection of neural progenitors to the terminal dendritic differentiation and connectivity of neurons. We focus here on activity-dependent synaptic regulation by BDNF and its receptor, full length TrkB. BDNF-TrkB signaling is involved in transcription, translation, and trafficking of proteins during various phases of synaptic development and has been implicated in several forms of synaptic plasticity. These functions are carried out by a combination of the three signaling cascades triggered when BDNF binds TrkB: the mitogen-activated protein kinase (MAPK), the phospholipase Cγ (PLC PLCγ), and the phosphatidylinositol 3-kinase (PI3K) pathways. MAPK and PI3K play crucial roles in both translation and/or trafficking of proteins induced by synaptic activity while PLCγ regulates intracellular Ca2+ that can drive transcription via cyclic AMP and a Protein Kinase C. Conversely, the abnormal regulation of BDNF is implicated in various developmental and neurodegenerative diseases that perturb neural development and function. We will discuss the current state of understanding BDNF signaling in the context of synaptic development and plasticity with a focus on the post-synaptic cell and close with the evidence that basic mechanisms of BDNF function still need to be understood in order to effectively treat genetic disruptions of these pathways that cause devastating neurodevelopmental diseases.
    Brain-derived neurotrophic factor (BDNF) promotes neuron survival in adulthood in the central nervous system. In the peripheral nervous system, BDNF is a contraction-inducible protein that, through its binding to tropomyosin-related kinase B receptor (TrkB), contributes to the retrograde neuroprotective control done by muscles, which is necessary for motor neuron function. BDNF/TrkB triggers downstream presynaptic pathways, involving protein kinase C, essential for synaptic function and maintenance. Undeniably, this reciprocally regulated system exemplifies the tight communication between nerve terminals and myocytes to promote synaptic function and reveals a new view about the complementary and essential role of pre and postsynaptic interplay in keeping the synapse healthy and strong. This signaling at the neuromuscular junction (NMJ) could establish new intervention targets across neuromuscular diseases characterized by deficits in presynaptic activity and muscle contractility and by the interruption of the connection between nervous and muscular tissues, such as amyotrophic lateral sclerosis (ALS). Indeed, exercise and other therapies that modulate kinases are effective at delaying ALS progression, preserving NMJs and maintaining motor function to increase the life quality of patients. Altogether, we review synaptic activity modulation of the BDNF/TrkB/PKC signaling to sustain NMJ function, its and other kinases’ disturbances in ALS and physical and molecular mechanisms to delay disease progression.
    Citations (29)
    The neurotrophins (NTs) are growth factors that play a critical role in the development, maintenance, survival, and death of the nervous system. BDNF is one of the neurotrophin family and plays a pivotal function in synaptic and learning plasticity. BDNF activates two different receptors, the Trk family of receptor tyrosine kinases and p75NTR, a member of the TNF receptor superfamily. These two receptors have a very unique function, Trk has a survivaldependent signaling through Ras-ERK, PI-3 kinases and PLC-γ, and p75NTR has a dual function as a survival via activation of NF-κB and promoting apoptosis through activation of JNK, ceremide and some death adaptor proteins. BDNF can modulate hippocampal LTP through TrkB, LTP is a neurophysiologic model for learning process. BDNF can enhance acquisition of information, storage, consolidation and also recall memories. TrkB receptor can also regulate synaptic strength and plasticity. Several of apoptotic pathways from p75NTR can be suppressed by TrkB receptor-mediating signaling and p75NTR can modify ligand-binding specificity and affinity to TrkR with important development consequences.
    Trk receptor
    Citations (1)
    A member of the neurotrophin family, brain-derived neurotrophic factor (BDNF) regulates neuronal survival and differentiation during development. Within the adult brain, BDNF is also important in neuronal adaptive processes, such as the activity-dependent plasticity that underlies learning and memory. These long-term changes in synaptic strength are mediated through alterations in gene expression. However, many of the mechanisms by which BDNF is linked to transcriptional and translational regulation remain unknown. Recently, the transcription factor NFATc4 (nuclear factor of activated T-cells isoform 4) was discovered in neurons, where it is believed to play an important role in long-term changes in neuronal function. Interestingly, NFATc4 is particularly sensitive to the second messenger systems activated by BDNF. Thus, we hypothesized that NFAT-dependent transcription may be an important mediator of BDNF-induced plasticity. In cultured rat CA3-CA1 hippocampal neurons, BDNF activated NFAT-dependent transcription via TrkB receptors. Inhibition of calcineurin blocked BDNF-induced nuclear translocation of NFATc4, thus preventing transcription. Further, phospholipase C was a critical signaling intermediate between BDNF activation of TrkB and the initiation of NFAT-dependent transcription. Both inositol 1,4,5-triphosphate (IP3)-mediated release of calcium from intracellular stores and activation of protein kinase C were required for BDNF-induced NFAT-dependent transcription. Finally, increased expression of IP3 receptor 1 and BDNF after neuronal exposure to BDNF was linked to NFAT-dependent transcription. These results suggest that NFATc4 plays a crucial role in neurotrophin-mediated synaptic plasticity.
    NFAT
    Abstract Brain-derived neurotrophic factor (BDNF) is a key regulator of the morphology and connectivity of central neurons. We have previously shown that BDNF/TrkB signaling regulates the activity and mobility of the GTPases Rab5 and Rab11, which in turn determine the post-endocytic sorting of signaling TrkB receptors. Moreover, altered Rab5 or Rab11 activity inhibits BDNF-induced dendritic branching. Whether Rab5 or Rab11 activity is important for local events only, or also for regulating nuclear signaling and gene expression, is unknown. Here, we investigated whether BDNF-induced signaling cascades were altered when early and recycling endosomes were disrupted by the expression of dominant negative mutants of Rab5 and Rab11. The activities of both Rab5 and Rab11 were required for sustained activity of Erk1/2 and nuclear CREB phosphorylation and for increased transcription of BDNF-dependent genes containing CRE-binding sites that include activity-regulated genes such as Arc , Dusp1 , c-fos and Egr1 and growth and survival genes such as Atf3 and Nf1 . Based on our results, we propose that the early and recycling endosomes provide a platform for the integration of neurotrophic signaling from the plasma membrane to the nucleus in neurons and that this mechanism likely regulates neuronal plasticity and neuronal survival. Significance Statement BDNF is a soluble neurotrophic factor that regulates plastic changes in the brain, including dendritic growth, by binding to its plasma membrane receptor TrkB. BDNF/TrkB activates signaling cascades leading to activation of CREB, a key transcription factor regulating circuit development and learning and memory. Our results uncover the cellular mechanisms that central neurons use to integrate the signaling of plasma membrane receptors with nuclear transcriptional responses. We found that the endosomal pathway is required for the signaling cascade initiated by BDNF and its receptors in the plasma membranes to modulate BDNF-dependent gene expression and neuronal dendritic growth mediated by the CREB transcription factor in the nucleus.
    ATF3
    Citations (1)
    Brain-Derived Neurotrophic Factor (BDNF) is a dominant neurotrophic factor in the brain which plays a crucial role in differentiation, regeneration and plasticity mechanisms. Binding of the BDNF to its high-affinity Tropomyosin-related kinase B (TrkB) receptor leads to phosphorylation of TrkB, thus activating the three important downstream intracellular signaling cascades within the neural cells including phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), Phospholipase C-γ (PLCγ), and mitogen-activated protein kinase/extracellular signal-related kinase (MAPK/ERK) pathways. Transcription of these pathways is regulated by cAMP Response Element-Binding protein (CREB) transcription factor, which can upregulate gene expression. In this review, we attempted to explore the role of BDNF and its associated pathways in susceptibility to Schizophrenia (Scz), Alzheimer's (AD), and Parkinson's (PD) diseases. Furthermore, we discuss dysfunction in BDNF signaling pathway and the therapeutic potential of BDNF in the treatment of these disorders. The review covers various therapeutic strategies including BDNF gene therapy, transplantation of BDNFexpressing cell grafts, epigenetic manipulation, and intraparenchymal BDNF protein infusion as well. This review seeks to achieve these goals by reviewing recent studies on BDNF and examining the details of BDNF pathway in any of the above-mentioned diseases.
    Trk receptor
    Background Brain-derived neurotrophic factor (BDNF) is believed to be an important regulator of striatal neuron survival, differentiation, and plasticity. Moreover, reduction of BDNF delivery to the striatum has been implicated in the pathophysiology of Huntington's disease. Nevertheless, many essential aspects of BDNF responses in striatal neurons remain to be elucidated. Methodology/Principal Findings In this study, we assessed the relative contributions of multipartite intracellular signaling pathways to the short-term induction of striatal gene expression by BDNF. To identify genes regulated by BDNF in these GABAergic cells, we first used DNA microarrays to quantify their transcriptomic responses following 3 h of BDNF exposure. The signal transduction pathways underlying gene induction were subsequently dissected using pharmacological agents and quantitative real-time PCR. Gene expression responses to BDNF were abolished by inhibitors of TrkB (K252a) and calcium (chelator BAPTA-AM and transient receptor potential cation channel [TRPC] antagonist SKF-96365). Interestingly, inhibitors of mitogen-activated protein kinase kinases 1 and 2 (MEK1/2) and extracellular signal-regulated kinase ERK also blocked the BDNF-mediated induction of all tested BDNF-responsive genes. In contrast, inhibitors of nitric oxide synthase (NOS), phosphotidylinositol-3-kinase (PI3K), and CAMK exhibited less prevalent, gene-specific effects on BDNF-induced RNA expression. At the nuclear level, the activation of both Elk-1 and CREB showed MEK dependence. Importantly, MEK-dependent activation of transcription was shown to be required for BDNF-induced striatal neurite outgrowth, providing evidence for its contribution to striatal neuron plasticity. Conclusions These results show that the MEK/ERK pathway is a major mediator of neuronal plasticity and other important BDNF-dependent striatal functions that are fulfilled through the positive regulation of gene expression.
    Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, are broadly expressed in the developing and adult mammalian brain. BDNF/TrkB-stimulated intracellular signaling is critical for neuronal survival, morphogenesis, and plasticity. It is well known that binding of BDNF to TrkB elicits various intracellular signaling pathways, including mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK), phospholipase Cg (PLCg), and phosphoinositide 3-kinase (PI3K) pathways, and that BDNF exerts biological effects on neurons via activation of similar mechanisms. In addition to TrkB, a low-affinity receptor p75 is also involved in neuronal survival and plasticity. BDNF affects neurons positively or negatively through various intracellular signaling pathways triggered by activation of TrkB or p75. From a clinical standpoint, roles of BDNF have been implicated in the pathophysiology of various brain diseases. The stress-induced steroid hormone, glucocorticoid, and BDNF are putatively associated with the pathophysiology of depression. Recent reports, including our studies, demonstrate possible crosstalk between glucocorticoid- and BDNF/TrkB-mediated signaling. Here, we present a broad overview of the current knowledge concerning BDNF action and associated intracellular signaling as it relates to neuronal protection, synaptic function, and morphological change. Furthermore, understanding the secretion and intracellular dynamics of BDNF proteins is critical as the fate of secreted BDNF may contribute to differences in neuronal response.
    Cyclin-dependent kinase 5
    Citations (576)