Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and morphologic MRI of cartilage in the long-term follow-up after Legg-Calvé-Perthes disease (LCPD)
Arne HolsteinChristoph ZilkensBernd BittersohlMarkus JägerTanja HaambergT.C. MamischRotem S. LanzmanPatric KröpilD. BlondinRüdiger KrauspeGerald AntochG. FürstFalk Miese
11
Citation
33
Reference
10
Related Paper
Citation Trend
Abstract:
Introduction: The purpose of the present study was to evaluate the feasibility of delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in the detection of cartilage changes versus morphologic imaging in the long-term course of Legg–Calvé–Perthes disease (LCPD). Methods: A total of 31 hips in 26 patients (mean age, 30.0 years; range, 18–54 years) who were diagnosed with LCPD in childhood were included. Twenty-one radiographically normal contralateral hips served as controls. dGEMRIC indices of femoral and acetabular cartilage in the weight-bearing zone. Cartilage morphology was classified on radial PD-weighted images according to the modified Outerbridge classification. Results: Mean dGEMRIC values of cartilage were significantly lower in hips after LCPD than in the radiographically normal contralateral hips (513 ± 100 ms vs. 579 ± 103 ms; P = 0.026). In 24 out of 31 LCPD hips and in 4 out of 21 radiographically normal contralateral hips, morphological cartilage changes were noted. Analysis of variance analysis revealed a significant influence of Outerbridge grading on decreased T1-values (P = 0.031). Conclusion: Our results suggest that dGEMRIC at 1.5 T is suitable to assess cartilage quality changes in the long-term follow-up after LCPD. The evaluation of biochemical cartilage quality with dGEMRIC may provide additional information about early cartilage changes occurring without visible alterations of cartilage morphology.Keywords:
Legg-Calve-Perthes disease
Grading (engineering)
Purpose To evaluate the speciation of gadolinium-containing species after multiple administrations of the gadolinium-based contrast agents (GBCAs) gadodiamide and gadoteridol and to quantify the amount of intact gadolinium complexes and insoluble gadolinium-containing species. Materials and Methods A total dose of 13.2 mmol per kilogram of body weight of each GBCA was administered in healthy Wistar rats over a period of 8 weeks. Three days after the final administration, rats were sacrificed, and the brains were excised and divided into three portions. Each portion of brain homogenate was divided into two parts, one for determination of the total gadolinium concentration with inductively coupled plasma mass spectrometry and one for determination of the amount of intact GBCA and gadolinium-containing insoluble species. Relaxometric measurements of gadodiamide and gadolinium trichloride in the presence of polysialic acid were also performed. Results The mean total gadolinium concentrations for gadodiamide and gadoteridol, respectively, were 0.317 μg/g ± 0.060 (standard deviation) and 0.048 μg/g ± 0.004 in the cortex, 0.418 μg/g ± 0.078 and 0.051 μg/g ± 0.009 in the subcortical brain, and 0.781 μg/g ± 0.079 and 0.061 μg/g ± 0.012 in the cerebellum. Gadoteridol comprised 100% of the gadolinium species found in rats treated with gadoteridol. In rats treated with gadodiamide, the largest part of gadolinium retained in brain tissue was insoluble species. In the cerebellum, the amount of intact gadodiamide accounts for 18.2% ± 10.6 of the total gadolinium found therein. The mass balance found for gadolinium implies the occurrence of other soluble gadolinium-containing species (approximately 30%). The relaxivity of the gadolinium polysialic acid species formed in vitro was 97.8 mM/sec at 1.5 T and 298 K. Conclusion Gadoteridol was far less retained, and the entire detected gadolinium was intact soluble GBCA, while gadodiamide yielded both soluble and insoluble gadolinium-containing species, with insoluble species dominating. © RSNA, 2017 Online supplemental material is available for this article.
Gadodiamide
Nephrogenic Systemic Fibrosis
Cite
Citations (104)
Background The use of gadolinium-based contrast agents (GBCAs) is linked to gadolinium retention in the skeleton of healthy individuals. The mechanism of gadolinium incorporation into bone tissue is not fully understood and requires spatially resolved analysis to locate the gadolinium. Purpose To compare the quantitative distribution of gadolinium retained over time in rodent femur following the administration of gadodiamide and gadobutrol at three different time points. Materials and Methods In this animal study conducted between May 2018 and April 2020, 108 9-week-old healthy rats were repeatedly injected with either gadodiamide, gadobutrol, or saline solution and were killed 1, 3, or 12 months after the last injection. The femurs of six female and six male rats per each group and time point were collected. Quantitative elemental imaging of gadolinium in longitudinal thin sections was performed on one sample per sex with use of laser ablation inductively coupled plasma mass spectrometry (ICP-MS). Gadolinium concentration was determined with use of ICP-MS on the samples of all animals (six per group). Mann-Whitney U tests were applied on pairwise comparisons to determine potential sex effect and GBCA effect on gadolinium concentrations. Results The highest gadolinium retention was observed in the gadodiamide group (concentration, 97-200 nmol · g-1), exceeding the mean concentration in the gadobutrol group (6.5-17 nmol · g-1). However, the gadolinium distribution pattern was similar for both contrast agents, showing prominent gadolinium retention at endosteal surfaces, in the bone marrow, and in small tissue pores. Gadolinium distribution in cortical bone changed over time, initially showing a thin rim of higher concentration close to the periosteum, which appeared to grow wider and move toward the interior of the femur over 1 year. Conclusion For both gadolinium-based contrast agents, gadolinium retention in rat bone was initially located close to the periosteum and bone cavities and changed with bone remodeling processes. The relevance to long-term storage of gadolinium in humans remains to be determined. © RSNA, 2022 Online supplemental material is available for this article.
Gadobutrol
Gadodiamide
Nephrogenic Systemic Fibrosis
Cite
Citations (2)
Bismuth
Cite
Citations (0)
Osteoarthritis is characterized by the degeneration of articular cartilage. Cartilage metabolic markers have been explored as possible markers for osteoarthritis, and osteogenic protein -1 (OP-1) has emerged out to play a major role in cartilage repair. Oxidative stress has been implicated as a mediator of cartilage damage in patients with osteoarthritis. The aim of this study was to correlate the cartilage metabolic markers and antioxidants with the severity of knee osteoarthritis.
Cartilage damage
Articular cartilage damage
Degeneration (medical)
Mediator
Cite
Citations (7)
The characteristic of osteoarthritis (OA) is the loss of articular cartilage.This loss arises from an imbalance between cartilage synthesis and degradation.The cartilage collagens were important components of cartilage.It's alteration in metabolism and structure will make an effective influence on occurrence,development and prognosis of osteoarthritis.This article will summarize the relationship between the markers of cartilage collagens and osteoarthritis.
Cite
Citations (0)
Gadolinium-based contrast agent interacts with the human body temporarily and improves the pictures of inside of the body produced by magnetic resonance imaging, computed tomography, X-rays and ultrasound and it also helps to distinguish the normal from abnormal conditions. In this study, the authors developed a simple, rapid, reliable and robust inductively coupled plasma mass-spectrometry method for estimation of gadolinium in gadolinium-based contrast agents to check the drug quality and ensure the patient safety. The samples were digested at 160°C using the microwave digestion system and the gadolinium was extracted in 0.4% (w/w) nitric acid. Interference of deposited gadolinium on sample cone and skimmer cone were investigated and evaluated. The developed method was validated as per ICH Q2 (R1) guideline and USP<730>. The precision was evaluated with six independent assays of gadolinium in each gadolinium-based contrast agent. The test method was found linear (r2 > 0.999) with five different levels covered from 25~200%, and accurate, mean recoveries were 92.5~107.5% at three different levels covered from 50~150%. The robustness was performed by changing the nitric acid concentration (0.4±0.04%, w/w) in diluent system. This method is suitable to quantitatively determine the amount of gadolinium in gadolinium-based contrast agent of drug products in presence of excipients used in formulation and also in drug substance.
MRI contrast agent
Cite
Citations (1)
Cite
Citations (39)
Cite
Citations (9)
Legg-Calve-Perthes disease (LCPD) is idiopathic osteonecrosis or idiopathic avascular necrosis of the capital femoral epiphysis of the femoral head. This condition was described independently by Arthur Legg, Jacques Calve, and Georg Perthes in 1910. This process is also known as coxa plana, Legg-Perthes, Legg Calve, or Perthes disease.
Legg-Calve-Perthes disease
Avascular Necrosis
Epiphysis
Osteochondritis
Cite
Citations (1)
To investigate the changes of intracranial gadolinium deposition in rats with linear gadolinium deposition after continuous injection of large ring gadolinium contrast agent. The intracranial gadolinium deposition in these rats increased but was relatively small. The DCN T1 value measured on MRI ensemble sequence scan images was significantly negatively correlated with gadolinium concentration in cerebellar DCN. (ALL P values were less than 0.05).
Deposition
Cite
Citations (0)