logo
    Gastrin-releasing peptide receptor signaling resulting in growth inhibition.
    8
    Citation
    0
    Reference
    10
    Related Paper
    Abstract:
    We demonstrate that gastrin-releasing peptide (GRP) can inhibit the proliferation of human immortal nontumorigenic (184-B5) mammary epithelial cells ectopically expressing the human GRP receptor. Growth of Balb 3T3 cells ectopically expressing relatively high levels of the GRP receptor was also inhibited by GRP; however, growth of transfectants expressing lower levels of the receptor was not inhibited. Compared with Balb 3T3 cells, mammary epithelial cells could be rendered sensitive to growth inhibition by GRP by the expression of fewer GRP receptors. GRP also stimulated DNA synthesis in quiescent, serum-starved Balb 3T3 transfectants. In clones that were sensitive to growth inhibition by GRP by virtue of their expression of relatively high levels of the GRP receptor, the dose-response curve of GRP-stimulated DNA synthesis was bell shaped. This is consistent with our conclusion that the growth-inhibiting activity of GRP required the activation of a relatively large pool of receptors in Balb 3T3 cells. Significantly, prostaglandin H synthase inhibitors, which block the production of prostaglandins from arachidonic acid, reduced GRP-inhibitory effects on DNA synthesis. We also compared a number of GRP-stimulated signaling pathways in Balb 3T3 clones that were sensitive or insensitive to growth inhibition by GRP, including cAMP formation, phospholipase C activation, calcium mobilization, and arachidonic acid formation. Taken together, these results demonstrate a novel GRP receptor-coupled signal pathway promoting growth inhibition in which prostaglandin H synthase plays a significant role.
    Keywords:
    Gastrin-releasing peptide
    3T3 cells
    Growth inhibition
    Human small cell lung carcinoma (SCLC) cells have been shown to contain significant levels of a bombesin-immunoreactive peptide. The 27-amino acid peptide, gastrin releasing peptide (GRP), has recently been shown to be responsible for the bombesin-like immunoreactivity found in SCLC cells. Among four lung cancer cell lines examined in vitro, GRP exhibited mitogenic activity for two SCLC subtypes, but not for a squamous carcinoma or adenocarcinoma lung cell line. The mitogenicity of the GRP molecule has been isolated to the carboxyterminal fragment, designated GRP 14-27, which is in part homologous to bombesin. The aminoterminal fragment, GRP 1-16, is no homologous to bombesin and exhibits no mitogenic activity. Thus, GRP may be an important growth regulating or autocrine factor in human SCLC.
    Gastrin-releasing peptide
    Citations (220)
    On the basis of structural homology and similar biological activity, gastrin-releasing peptide (GRP) has been considered the mammalian equivalent of amphibian bombesin. In this paper we now show this to be incorrect. Chromatography of frog (Bombina orientalis) gut extracts demonstrated two peaks of bombesin-like immunoreactivity (BLI), one similar in size to GRP and one similar in size to amphibian bombesin. These peaks were purified by high pressure liquid chromatography then subjected to mass spectrometric analyses to determine molecular weights and amino acid sequence. Based on the amino acid sequence of the lower molecular weight BLI species, a mixed oligonucleotide probe was prepared and used to screen a B. orientalis stomach cDNA library. Sequence analysis showed that all hybridizing clones encoded a 155-amino acid protein homologous to the mammalian GRP precursor. The mass spectra of the high and low molecular weight peaks of frog gut BLI were consistent with their origin from the processing of the frog GRP (fGRP) precursor into GRP-29 and GRP-10, just like the processing of the rat GRP precursor. Sequence homology showed that the fGRP precursor is more homology showed that the fGRP precursor is more closely related to the mammalian GRP precursors than to either the frog bombesin or frog ranatensin precursors. Northern blot analysis showed that fGRP is encoded by a mRNA of 980 bases, clearly different from the 750-base mRNA which encodes frog bombesin. Northern blot analysis and in situ hybridization showed fGRP mRNA in frog brain and stomach and bombesin mRNA in frog skin, brain, and stomach. That frogs have independent genes for both GRP and bombesin raises the possibility that mammals have an as yet uncharacterized gene encoding a true mammalian bombesin.
    Gastrin-releasing peptide
    Cloning (programming)
    The effects of gastrin-releasing peptide (GRP), bombesin, GRP-(1–16) and GRP-(21–27) on guinea pig nasal mucosal secretion were studied in vivo. GRP, bombesin, and GRP-(21–27) induced significant secretion of total protein, albumin, and alkaline phosphatase. GRP induced significant secretion at lower concentrations (10(-11) and 10(-10) M) than were required for bombesin and GRP-(21–27) (10(-7) M). GRP-(1–16) did not stimulate secretion, indicating that the COOH-terminal region of GRP contained the secretagogic principle. Capsaicin, a stimulant of nociceptive sensory nerves, stimulated GRP release into nasal secretions. These data suggest that GRP is present in guinea pig nasal mucosa and that the COOH-terminal region of GRP may regulate mucosal macromolecule secretion.
    Gastrin-releasing peptide
    In recent years much attention has been focused on gastrin-releasing peptide (GRP), the mammalian homologue of bombesin, both as a neuroregulatory hormone and as a tissue-specific growth factor in normal and neoplastic tissues. This paper will analyze the distribution and role of GRP in normal mammalian tissues and examine the potential involvement of GRP in diverse pathologic processes.
    Gastrin-releasing peptide
    Citations (251)
    The objective of this study was to compare the gastrin- and gastric inhibitory peptide (GIP)-releasing actions of bombesin, gastrin-releasing peptide (GRP)-27, neuromedin B, and GRP-10 in rats. Both bombesin and GRP-27 are potent stimulants of gastrin and GIP release, whereas neuromedin B and GRP-10 are less effective, on a molar basis.
    Gastrin-releasing peptide
    Gastrointestinal hormone
    G cell
    Citations (13)