logo
    Erythropoietin, a Neuroprotective & Pro-Angiogenic Cytokine, and Its Receptors Are Elevated in the Neuroglial Retina Prior to Neovascularization in the Diabetic, Homozygous Ren2 Transgenic Rat
    0
    Citation
    0
    Reference
    20
    Related Paper
    Both insulin and IGF-1 have been implicated in control of retinal endothelial cell growth, neovascularization, and diabetic retinopathy. To precisely define the role of insulin and IGF-1 signaling in endothelium in these processes, we have used the oxygen-induced retinopathy model to study mice with a vascular endothelial cell–specific knockout of the insulin receptor (VENIRKO) or IGF-1 receptor (VENIFARKO). Following relative hypoxia, VENIRKO mice show a 57% decrease in retinal neovascularization as compared with controls. This is associated with a blunted rise in VEGF, eNOS, and endothelin-1. By contrast, VENIFARKO mice show only a 34% reduction in neovascularization and a very modest reduction in mediator generation. These data indicate that both insulin and IGF-1 signaling in endothelium play a role in retinal neovascularization through the expression of vascular mediators, with the effect of insulin being most important in this process.
    Citations (190)
    A hallmark of proliferative retinopathies, such as retinopathy of prematurity (ROP), is a pathological neovascularization orchestrated by hypoxia and the resulting hypoxia-inducible factor (HIF)-dependent response. We studied the role of Hif2α in hematopoietic cells for pathological retina neovascularization in the murine model of ROP, the oxygen-induced retinopathy (OIR) model. Hematopoietic-specific deficiency of Hif2α ameliorated pathological neovascularization in the OIR model, which was accompanied by enhanced endothelial cell apoptosis. That latter finding was associated with up-regulation of the apoptosis-inducer FasL in Hif2α-deficient microglia. Consistently, pharmacological inhibition of the FasL reversed the reduced pathological neovascularization from hematopoietic-specific Hif2α deficiency. Our study found that the hematopoietic cell Hif2α contributes to pathological retina angiogenesis. Our findings not only provide novel insights regarding the complex interplay between immune cells and endothelial cells in hypoxia-driven retina neovascularization but also may have therapeutic implications for proliferative retinopathies.—Korovina, I., Neuwirth, A., Sprott, D., Weber, S., Sardar Pasha, S. P. B., Gercken, B., Breier, G., El-Armouche, A., Deussen, A., Karl, M. O., Wielockx, B., Chavakis, T., Klotzsche-von Ameln, A. Hematopoietic hypoxia-inducible factor 2α deficiency ameliorates pathological retinal neovascularization via modulation of endothelial cell apoptosis. FASEB J. 33, 1758–1770 (2019). www.fasebj.org
    Hypoxia
    Citations (17)
    Purpose: Nattokinase (NK), an active ingredient extracted from traditional food Natto, has been studied for prevention and treatment of cardiovascular diseases due to various vasoprotective effects, including fibrinolytic, antihypertensive, anti-atherosclerotic, antiplatelet, and anti-inflammatory activities. Here, we reported an antineovascular effect of NK against experimental retinal neovascularization. Methods: The inhibitory effect of NK against retinal neovascularization was evaluated using an oxygen-induced retinopathy murine model. Expressions of Nrf2/HO-1 signaling and glial activation in the NK-treated retinae were measured. We also investigated cell proliferation and migration of human umbilical vein endothelial cells (HUVECs) after NK administration. Results: NK treatment significantly attenuated retinal neovascularization in the OIR retinae. Consistently, NK suppressed VEGF-induced cell proliferation and migration in a concentration-dependent manner in cultured vascular endothelial cells. NK ameliorated ischemic retinopathy partially via activating Nrf2/HO-1. In addition, NK orchestrated reactive gliosis and promoted microglial activation toward a reparative phenotype in ischemic retina. Treatment of NK exhibited no cell toxicity or anti-angiogenic effects in the normal retina. Conclusions: Our results revealed the anti-angiogenic effect of NK against retinal neovascularization via modulating Nrf2/HO-1, glial activation and neuroinflammation, suggesting a promising alternative treatment strategy for retinal neovascularization.
    Gliosis
    Citations (26)
    Hypoxia causes increased expression of several proteins that have the potential to promote neovascularization. Vascular endothelial growth factor (VEGF) is up-regulated by hypoxia in the retina and plays a central role in the development of several types of ocular neovascularization, but the effects of other hypoxia-regulated proteins are less clear. Stromal-derived factor-1 (SDF-1) and its receptor, CXCR4, have hypoxia response elements in the promoter regions of their genes and are increased in hypoxic liver and heart. In this study, we found that SDF-1 and CXCR4 are increased in hypoxic retina, with SDF-1 localized in glial cells primarily near the surface of the retina and CXCR4 localized in bone marrow-derived cells. Glial cells also expressed CXCR4, which suggested the possibility of autocrine stimulation, but influx of bone marrow-derived cells is the major source of increased levels of CXCR4. High levels of VEGF in the retina in the absence of hypoxia also increased levels of Cxcr4 and Sdf1 mRNA. CXCR4 antagonists reduced influx of bone marrow-derived cells into ischemic retina and strongly suppressed retinal neovascularization, VEGF-induced subretinal neovascularization, and choroidal neovascularization. These data suggest that SDF-1 and CXCR4 contribute to the involvement of bone marrow-derived cells and collaborate with VEGF in the development of several types of ocular neovascularization. They provide new targets for therapeutic intervention that may help to bolster and supplement effects obtained with VEGF antagonists.
    Hypoxia
    Citations (145)
    Avascular, hypoxic retina has been postulated to be a source of angiogenic factors that cause aberrant angiogenesis and intravitreal neovascularization (IVNV) in retinopathy of prematurity. Vascular endothelial growth factor (VEGF) is an important factor involved. However, VEGF is also required for normal retinal vascular development, which raises concerns about inhibiting its activity to treat IVNV in retinopathy of prematurity. Therefore, understanding the effects that VEGF has on other factors in the development of avascular retina is important to prevent aberrant angiogenesis and IVNV. Here, we show that STAT3 was activated by increased retinal VEGF in the rat 50/10 oxygen-induced retinopathy model. Phospho-STAT3 colocalized with glutamine synthetase-labeled Müller cells. Inhibition of STAT3 reduced avascular retina and increased retinal erythropoietin (Epo) expression. Epo administered exogenously also reduced avascular retina in the model. In an in vitro study, hypoxia-induced VEGF inhibited Epo gene expression by STAT3 activation in rat Müller cells. The mechanism by which activated STAT3 regulated Epo was by inhibition of Epo promoter activity. Together, these findings show that increased retinal VEGF contributes to avascular retina by regulating retinal Epo expression through Janus kinase/STAT signaling. Our results suggest that rescuing Epo expression in the retina before the development of IVNV may promote normal developmental angiogenesis and, therefore, reduce the stimulus for later pathologic IVNV.
    Vascular development in the eye has been described as a complex process involving both vasculogenesis and angiogenesis. Multiple cell types are involved in the process including angioblasts, vascular endothelial cells, astrocytes, pericytes, and Muller glial cells. This suggests that multiple growth factors and cytokines are required to regulate retinal vascular development. Leukemia inhibitory factor (LIF) is a member of the interleukin 6 family of cytokines. LIF is expressed during inflammation and has been reported to affect vascular development in culture; however, its effects in vivo have not been demonstrated. The purpose of this study was to determine how LIF could regulate ocular vascular development.We have analyzed ocular vascular development in transgenic mice that express LIF in the ocular lens from embryonic day 11.In transgenic mice, LIF reduced development of embryonic vasculature in the eye, and inhibited retinal vascular development. Inhibition in vivo was independent of vascular endothelial cell growth factor (VEGF) expression. In older transgenic mice, the absence of a retinal vasculature resulted in retinal ischemia and elevated VEGF levels. The upregulation of VEGF resulted in the proliferation of pathological vascular membranes in the vitreous and neovascularization penetrating the retina, which in turn resulted in tractional retinal detachment.LIF is a potent inhibitor of retinal vascular development. These transgenic mice will be useful as a model of persistent fetal vasculature and to study the mechanism for the development of neovascular membranes in the vitreous and could be used to develop inhibitors of tractional detachment.
    Vasculogenesis
    Vascular permeability
    Citations (26)
    Neovascularization associated with diabetic retinopathy (DR) and other ocular disorders is a leading cause of visual impairment and adult-onset blindness. Currently available treatments are merely palliative and offer temporary solutions. Here, we tested the efficacy of antiangiogenic gene transfer in an animal model that mimics the chronic progression of human DR. Adeno-associated viral (AAV) vectors of serotype 2 coding for antiangiogenic Pigment Epithelium Derived Factor (PEDF) were injected in the vitreous of a 1.5 month-old transgenic model of retinopathy that develops progressive neovascularization. A single intravitreal injection led to long-term production of PEDF and to a striking inhibition of intravitreal neovascularization, normalization of retinal capillary density, and prevention of retinal detachment. This was parallel to a reduction in the intraocular levels of Vascular Endothelial Growth Factor (VEGF). Normalization of VEGF was consistent with a downregulation of downstream effectors of angiogenesis, such as the activity of Matrix Metalloproteinases (MMP) 2 and 9 and the content of Connective Tissue Growth Factor (CTGF). These results demonstrate long-term efficacy of AAV-mediated PEDF overexpression in counteracting retinal neovascularization in a relevant animal model, and provides evidence towards the use of this strategy to treat angiogenesis in DR and other chronic proliferative retinal disorders.
    PEDF
    Abstract Impaired endothelial repair is a key contributor to microvascular rarefaction and consequent end-organ dysfunction in diabetes. Recent studies suggest an important role for bone marrow-derived early outgrowth cells (EOCs) in mediating endothelial repair, but the function of these cells is impaired in diabetes, as in advanced age. We sought to determine whether diabetes-associated EOC dysfunction might be attenuated by pharmacological activation of silent information regulator protein 1 (SIRT1), a lysine deacetylase implicated in nutrient-dependent life span extension in mammals. Despite being cultured in normal (5.5 mM) glucose for 7 days, EOCs from diabetic rats expressed less SIRT1 mRNA, induced less endothelial tube formation in vitro and neovascularization in vivo, and secreted less of the proangiogenic ELR+ CXC chemokines CXCL1, CXCL3, and CXCL5. Ex vivo SIRT1 activation restored EOC chemokine secretion and increased the in vitro and in vivo angiogenic activity of EOC conditioned medium derived from diabetic animals to levels similar to that derived from control animals. These findings suggest a pivotal role for SIRT1 in diabetes-induced EOC dysfunction and that its pharmacologic activation may provide a new strategy for the restoration of EOC-mediated repair mechanisms.
    CXCL1
    Endothelial Dysfunction
    Ex vivo
    Citations (23)