Molecular insights into brown rust resistance and potential epidemic based on the Bru 1 gene in sugarcane varieties and new elite clones

2018 
In most sugarcane cultivation areas, sugarcane brown rust (SBR), caused by Puccinia melanocephala, is an economically important fungal disease that leads to severe yield loss in susceptible cultivars. Bru1, which is the major dominant SBR resistance gene, has been widely used in the prediction of brown rust resistance in sugarcane. In this study, three panels of sugarcane germplasms, the major varieties approved over the past 10 years and new elite clones in the current national regional trial, together with one panel of Saccharum spontaneum, were employed in estimating the possibility of SBR epidemic and to assess the efficiency of 9O20-F4-HaeIII in eliminating false positives. Among the current top five varieties used as sucrose feedstock, accounting for more than 68.9% of the total cultivated area, all were highly resistant to SBR, although only three harboring Bru1. Two major varieties Yuetang60 and Guitang46 without harboring Bru1 were highly susceptible to SBR, together with highly susceptible Funong41, which need prudent promotion. Approximately 60.5% of the 38 new elite clones were Bru1 positive. Considering the susceptibility of Liucheng03-1137, which exhibits a strong promotion momentum, together with Funong41, Guitang46, Yuetang60, and Yunzhe06-47, four were favored by the enterprise due to their superior sucrose content and good stalk yield, despite their high susceptibility to SBR, and additional Yuetang93-159, one current top five varieties with declining resistance, which results in a potential risk for brown rust epidemic. Furthermore, low frequency of the wild germplasm of S. spontaneum from five different countries was Bru1 positive. In addition, a perfect molecular diagnostic result was observed in all modern sugarcane clones using two dominant markers, and HaeIII can prevent the occurrence of false positive results when the 9O20-F4 PCR products of S. spontaneum are digested by RsaI. The prevalent chewing cane Badila without Bru1 is highly resistant to SBR. Our results provide valuable information for the extension of sugarcane varieties and a batch of novel SBR resistance sources with superior comprehensive characters for crossbreeding, and for SBR-resistant gene pyramiding by crossing or through mining and using of new SBR-resistant genes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    4
    Citations
    NaN
    KQI
    []