Differential Expression of Immune-Regulatory Genes Associated with PD-L1 Display in Melanoma: Implications for PD-1 Pathway Blockade

2015 
Purpose: Blocking the immunosuppressive PD-1/PD-L1 pathway has antitumor activity in multiple cancer types, and PD-L1 expression on tumor cells and infiltrating myeloid cells correlates with the likelihood of response. We previously found that IFNG (interferon-gamma) was overexpressed by tumor-infiltrating lymphocytes in PD-L1+ versus PD-L1(−) melanomas, creating adaptive immune resistance by promoting PD-L1 display. This study was undertaken to identify additional factors in the PD-L1+ melanoma microenvironment coordinately contributing to immunosuppression. Experimental Design: Archived, formalin-fixed paraffin-embedded melanoma specimens were assessed for PD-L1 protein expression at the tumor cell surface with IHC. Whole-genome expression analysis, quantitative (q)RT-PCR, IHC, and functional in vitro validation studies were used to assess factors differentially expressed in PD-L1+ versus PD-L1(−) melanomas. Results: Functional annotation clustering based on whole-genome expression profiling revealed pathways upregulated in PD-L1+ melanomas, involving immune cell activation, inflammation, and antigen processing and presentation. Analysis by qRT-PCR demonstrated overexpression of functionally related genes in PD-L1+ melanomas, involved in CD8+ T-cell activation ( CD8A , IFNG , PRF1 , and CCL5 ), antigen presentation ( CD163 , TLR3 , CXCL1 , and LYZ ), and immunosuppression [ PDCD1 (PD-1), CD274 (PD-L1), and LAG3 , IL10 ]. Functional studies demonstrated that some factors, including IL10 and IL32-gamma, induced PD-L1 expression on monocytes but not tumor cells. Conclusions: These studies elucidate the complexity of immune checkpoint regulation in the tumor microenvironment, identifying multiple factors likely contributing to coordinated immunosuppression. These factors may provide tumor escape mechanisms from anti–PD-1/PD-L1 therapy, and should be considered for cotargeting in combinatorial immunomodulation treatment strategies. Clin Cancer Res; 21(17); 3969–76. ©2015 AACR .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    166
    Citations
    NaN
    KQI
    []