Numerical study on formation of electronic quantum states due to self-coherency in a non-periodic system

2006 
Abstract In order to investigate formation process of electronic quantum states in a confined system, we simulate motion of a wavepacket state and show how an eigenstate is formed due to coherence of electronic wave from the viewpoint that an eigenstate arises as a result of self-interference of a moving electron. Numerical results for a Henon–Heiles potential in which chaotic motion can occur in the classical mechanics indicate that electronic eigenstates can arise even when motion of an electron is non-periodic. The results show that, in the quantum mechanics, periodicity is unnecessary for the formation of eigenstates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []