Estimating Near-Surface Shear-Wave-Velocity Structures Via Multichannel Analysis of Rayleigh and Love Waves: An Experiment at the Boise Hydrogeophysical Research Site

2020 
Surface-wave analysis has been widely used for near-surface geophysical and geotechnical studies by using the dispersive characteristic of surface waves (Rayleigh or Love waves) to determine subsurface model parameters. Unlike Rayleigh waves, the dispersive nature of Love waves is independent of P-wave velocity in 1D models, which makes Love-wave dispersion curve interpretation simpler than Rayleigh waves. This reduces the degree of nonuniqueness leading to more stable inversion of Love-wave dispersion curves. To estimate the near-surface shear-wave velocities (Vs) using multichannel analysis of Rayleigh (MASW) and Love waves (MALW) for hydrologic characterization, we conducted an experiment at the Boise Hydrogeophysical Research Site (BHRS, an experimental well field located near Boise, Idaho, USA). We constructed the pseudo-3D velocity structures at the BHRS using both the MASW and MALW methods and compared the results to borehole measurements. We used the 3D Vs distribution to identify and resolve the extent of a relatively low-velocity anomaly caused by a sand channel. The Vs structure and anomaly boundaries were delineated at the meter scale and confirmed by the ground-penetrating radar surveys. The differences in shear-wave velocity determined by MASW, MALW and borehole measurements were discussed and interpreted to reflect the near-surface anisotropy associated with the hydrologic characteristics at the BHRS. Our results demonstrated that the combination of MALW and MASW can be a powerful tool for near-surface characterization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    15
    Citations
    NaN
    KQI
    []