Identifying influential spreaders by gravity model

2019 
Identifying influential spreaders in complex networks is crucial in understanding, controlling and accelerating spreading processes for diseases, information, innovations, behaviors, and so on. Inspired by the gravity law, we propose a gravity model that utilizes both neighborhood information and path information to measure a node’s importance in spreading dynamics. In order to reduce the accumulated errors caused by interactions at distance and to lower the computational complexity, a local version of the gravity model is further proposed by introducing a truncation radius. Empirical analyses of the Susceptible-Infected-Recovered (SIR) spreading dynamics on fourteen real networks show that the gravity model and the local gravity model perform very competitively in comparison with well-known state-of-the-art methods. For the local gravity model, the empirical results suggest an approximately linear relation between the optimal truncation radius and the average distance of the network.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    48
    Citations
    NaN
    KQI
    []