Synthesis of super-high-molecular-weight poly-γ-glutamic acid by Bacillus subtilis subsp. chungkookjang

2005 
Abstract Poly-γ-glutamic acid (PGA) with high molecular weight is a most promising biomaterial in industrial uses; however, it generally diverse in molecular structure and co-produced with polysaccharides and various other biopolymers. In this study, it was ascertained that Bacillus subtilis subsp. chungkookjang cells are superior to B. subtilis ( natto ) cells as the biocatalyst for the synthesis of super-high-molecular-weight PGA (over 2000 k). We effectively purified PGA and fractionated according to its molecular weight by anion-exchange chromatography, and further developed a simple method for determination of the molecular weight of PGA on the basis of numbers of glutamate monomers generated by hydrolysis and a free amino group quantified with 1-fluoro-2,4-dinitrobenzene (FDNB). The molecular weight determination with FDNB was available even for a super-high-molecular-weight PGA, e.g. the 2000-k polymer. Super-high-molecular-weight PGAs (average 2000 k and 7000 k), which were synthesized by the use of B. subtilis subsp. chungkookjang cells in the presence of a high concentration of ammonium sulfate, were rich in l -glutamate rather than in the d -enantiomer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    54
    Citations
    NaN
    KQI
    []