Starbursting [O III] emitters and quiescent [C II] emitters in the reionization era.

2020 
Recent observations have successfully detected [O III] $88.3\,{\rm \mu m}$ and [C II] $157.6\,{\rm \mu m}$ lines from galaxies in the early Universe with the Atacama Large Millimeter Array (ALMA). Combining cosmological hydrodynamic simulations and radiative transfer calculations, we present relations between the metal line emission and galaxy evolution at $z=6-15$. We find that galaxies during their starburst phases have high [O III] luminosity of $\sim 10^{42}~\rm erg~s^{-1}$. Once supernova feedback quenches star formation, [O III] luminosities rapidly decrease and continue to be zero for $\sim 100\,{\rm Myr}$. The slope of the relation between $\log{(\rm SFR/M_{\odot}~yr^{-1})}$ and $\log{(L_{\rm [O_{III}]}/{\rm L_{\odot}})}$ at $z=6-9$ is 1.03, and 1.43 for $\log{(L_{\rm [C_{II}]}/{\rm L_{\odot}})}$. As gas metallicity increases from sub-solar to solar metallicity by metal enrichment from star formation and feedback, the line luminosity ratio $L_{\rm [O_{III}]} / L_{\rm [C_{II}]}$ decreases from $\sim 10$ to $\sim 1$ because the O/C abundance ratio decreases due to carbon-rich winds from AGB stars. Therefore, we suggest that the combination of [O III] and [C II] lines is a good probe to investigate the relative distribution of ionized and neutral gas in high-$z$ galaxies. In addition, we show that deep [C II] observations with a sensitivity of $\sim 10^{-2}~{\rm mJy~arcsec^{-2}}$ can probe the extended neutral gas disks of high-$z$ galaxies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    184
    References
    21
    Citations
    NaN
    KQI
    []