On the smallest simultaneous power nonresidue modulo a prime
2017
Let $p$ be a prime and $p_1,\ldots, p_r$ be distinct prime divisors of $p-1$. We prove that the smallest positive integer $n$ which is a simultaneous $p_1,\ldots,p_r$-power nonresidue modulo $p$ satisfies $$ n
satisfying $c_r\ge e^{-(1+o(1))r} \; (r\to \infty).$
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
12
References
2
Citations
NaN
KQI