On the smallest simultaneous power nonresidue modulo a prime

2017 
Let $p$ be a prime and $p_1,\ldots, p_r$ be distinct prime divisors of $p-1$. We prove that the smallest positive integer $n$ which is a simultaneous $p_1,\ldots,p_r$-power nonresidue modulo $p$ satisfies $$ nsatisfying $c_r\ge e^{-(1+o(1))r} \; (r\to \infty).$
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    2
    Citations
    NaN
    KQI
    []