Effect of Phenotype on the Transcription of the Genes for Platelet-Derived Growth Factor (PDGF) Isoforms in Human Smooth Muscle Cells, Monocyte-Derived Macrophages, and Endothelial Cells In Vitro

1997 
Abstract Proliferation of arterial smooth muscle cells (ASMCs) contributes considerably to enlargement of the arterial wall during atherosclerosis. The platelet-derived growth factor (PDGF) is a well-known mitogen and chemoattractant for ASMCs. Quantitative reverse transcription–polymerase chain reaction showed that cells appearing in atherosclerotic lesions, such as ASMCs, endothelial cells, and monocytes/macrophages, expressed mRNAs for both PDGF A and B chains in vitro, with the highest expression in endothelial cells. On proliferation, ASMCs and endothelial cells upregulated PDGF A mRNA. Differentiation of macrophages increased the amount of both mRNAs. Thus, the regulation of PDGF A- and B-chain expression depends on cell types and phenotypic states of the cells, which have also been found in vivo in human atherosclerotic lesions. PDGF A can be produced as short and long isoforms. The latter binds with high affinity to glycosaminoglycans. Irrespective of phenotype, only the minor part of total PDGF A...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []