DNB exit scraper—Concept and engineering
2013
Abstract The 100 kV negative hydrogen ion source based Diagnostic Neutral Beam (DNB) injector is part of the Indian procurement for ITER. The DNB is designed to deliver an 18–20 A hydrogen neutral beam to the ITER plasma. The exit scraper (ES) defines the profile of the beam after it leaves the calorimeter, the last Beam Line Components (BLCs) during operation. BTR 1 and PDP 1 codes are used to obtain the optimum entry and exit opening dimensions of the ES, so as to deliver the maximum power to the tokamak plasma, and to limit the power to downstream components due to beam interception, to protect front end components from the interception of re-ionized devious particles. Each horizontal heat transfer (HT) panel of ES receives a total power of 85 kW for each symmetric 10 mrad beam (worst case scenario) with peak power density of 1.17 MW/m 2 . The thermo hydraulic design is carried out to withstand the heat flux due to the beam interception on the ES. The mechanical design of the ES is carried out by considering the spatial constraints in the DNB system and the remote handling (RH) system. In the present design, the copper heat transfer panels are directly bolted to the structural member. Protection shall be incorporated to ensure that there is no exposure of the bolt head. The thermo-mechanical analysis has been carried out for the normal, off-normal (accidental/worst-case) events of the ITER DNB. During normal operation, the maximum possible von Mises stress of the order of 62.4 MPa can be expected on the bottom heat transfer panel, and the corresponding deflection of the structure is of the order of 0.62 mm. All the stress checks were carried out with respect to the Structural Design Criteria for In-vessel Components (SDC-IC) criterion. The paper shall present the ES design highlighting its salient features.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
2
References
0
Citations
NaN
KQI