Multi-Modal Data Analysis Based Game Player Experience Modeling Using LSTM-DNN

2021 
Game player modeling is a paradigm of computational models to exploit players’ behavior and experience using game and player analytics. Player modeling refers to descriptions of players based on frameworks of data derived from the interaction of a player’s behavior within the game as well as the player’s experience with the game. Player behavior focuses on dynamic and static information gathered at the time of gameplay. Player experience concerns the association of the human player during gameplay, which is based on cognitive and affective physiological measurements collected from sensors mounted on the player’s body or in the player’s surroundings. In this paper, player experience modeling is studied based on the board puzzle game “Candy Crush Saga” using cognitive data of players accessed by physiological and peripheral devices. Long Short-Term Memory-based Deep Neural Network (LSTM-DNN) is used to predict players’ effective states in terms of valence, arousal, dominance, and liking by employing the concept of transfer learning. Transfer learning focuses on gaining knowledge while solving one problem and using the same knowledge to solve different but related problems. The homogeneous transfer learning approach has not been implemented in the game domain before, and this novel study opens a new research area for the game industry where the main challenge is predicting the significance of innovative games for entertainment and players’ engagement. Relevant not only from a player’s point of view, it is also a benchmark study for game developers who have been facing problems of “cold start” for innovative games that strengthen the game industrial economy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []