Nuclear Factor-κB is an Important Modulator of the Altered Gene Expression Profile and Malignant Phenotype in Squamous Cell Carcinoma

2004 
We reported previously that transcription factor nuclear factor (NF)-κB is constitutively activated in human and murine squamous cell carcinomas (SCCs). The role of NF-κB in the cumulative changes in gene expression with transformation and progression of the murine SCC Pam 212 and after switching off NF-κB by a dominant negative inhibitor κB mutant (IκBαM) was explored by profiling with a 15,000-element cDNA micoarrray. Remarkably, NF-κB modulated the expression of >60% of the 308 genes differentially expressed between normal keratinocytes and metastatic SCCs. NF-κB directly or indirectly modulated expression of programs of genes functionally linked to proliferation, apoptosis, adhesion, and angiogenesis. Among these, changes in expression of cyclin D1, inhibitor of apoptosis-1, mutant Trp53, and β-catenin detected with modulation of NF-κB by microarray were confirmed by Western and Northern blot. NF-κB DNA binding motifs were detected in the promoter of ∼63% of genes showing increased expression and 33% of the genes showing decreased expression. The ACTACAG motif implicated in the NF-κB-dependent down-regulation of mRNA expression of MyoD and Sox9 was detected in the coding portion of about 15% of genes showing increased or decreased expression. Inactivation of NF-κB inhibited malignant phenotypic features including proliferation, cell survival, migration, angiogenesis, and tumorigenesis. These results provide evidence that NF-κB is an important modulator of gene expression programs that contribute to the malignant phenotype of SCC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    155
    Citations
    NaN
    KQI
    []