Template-activated bifunctional soluble salt ZnCl2 assisted synthesis of coal-based hierarchical porous carbon for high-performance supercapacitors

2022 
Abstract A series of coal-based hierarchical porous carbons with adjustable pores were successfully prepared with the assistance of the soluble salt Zinc chloride (ZnCl2). During the carbonization process, ZnCl2, with a low melting point (238 °C), “in situ occupied” and “occupied” within the coal solids to generate interconnected pores, which acted as a template. Simultaneously, the activation of ZnCl2 reduced the oxygen content of products and further improves their electrical conductivity. Optimization of the mass of the salt and the carbonization temperature resulted in targeted product with a suitable specific surface area (1581 m2 g−1) and unique pores (Vmeso/Vtotal = 45%), which exhibited a high specific capacitance (470.7 F g−1 at 0.5 A g−1) in 6 M KOH electrolyte. The symmetrical supercapacitor of targeted product has favorable rate performance (256.7 F g−1 at 0.5 A g−1, 84.8% capacity retention at 30 A g−1) and excellent cycling performance (after 10000 cycles, the specific capacitance increases to 115% of the initial capacity at 10 A g−1). In the EMIMBF4 electrolyte system, the energy density is 95.31 Wh kg−1 at 213.13 W kg−1. Therefore, this work provides an effective method to improve the green and efficient use of coal.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    1
    Citations
    NaN
    KQI
    []