Force Sensorless Admittance Control for Teleoperation of Uncertain Robot Manipulator Using Neural Networks
2019
In this paper, a force sensorless control scheme based on neural networks (NNs) is developed for interaction between robot manipulators and human arms in physical collision. In this scheme, the trajectory is generated by using geometry vector method with Kinect sensor. To comply with the external torque from the environment, this paper presents a sensorless admittance control approach in joint space based on an observer approach, which is used to estimate external torques applied by the operator. To deal with the tracking problem of the uncertain manipulator, an adaptive controller combined with the radial basis function NN (RBFNN) is designed. The RBFNN is used to compensate for uncertainties in the system. In order to achieve the prescribed tracking precision, an error transformation algorithm is integrated into the controller. The Lyapunov functions are used to analyze the stability of the control system. The experiments on the Baxter robot are carried out to demonstrate the effectiveness and correctness of the proposed control scheme.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
47
References
35
Citations
NaN
KQI