Strong NP-hardness for sparse optimization with concave penalty functions

2017 
Consider the regularized sparse minimization problem, which involves empirical sums of loss functions for $n$ data points (each of dimension $d$) and a nonconvex sparsity penalty. We prove that finding an $\mathcal{O}(n^{c_1}d^{c_2})$-optimal solution to the regularized sparse optimization problem is strongly NP-hard for any $c_1, c_2\in [0,1)$ such that $c_1+c_2<1$. The result applies to a broad class of loss functions and sparse penalty functions. It suggests that one cannot even approximately solve the sparse optimization problem in polynomial time, unless P $=$ NP.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    6
    Citations
    NaN
    KQI
    []