Effects of sound on flow separation from blunt flat plates

1983 
Abstract The effect of sound on the flow around plates with semicircular or square leading edges and square trailing edges located in a low turbulence open jet has been studied. In all circumstances the length of the leading edge separation bubbles associated with square leading edge plates was found to oscillate. When sound was applied to the flow around these plates, the leading edge shear layers reattached closer to the leading edge and the oscillations in bubble length occurred at the applied sound frequency, generating patches of concentrated vorticity in the boundary layers. These vorticity patches moved downstream near the plate surface and then beyond the trailing edge to form vortex cores in a street with a Strouhal number equal to the applied sound value. Sometimes these vortex streets are unstable and break down into streets with Strouhal numbers approaching those observed without sound. These effects of sound were not observed in the flow around plates with semicircular leading edges. Without sound, square leading edge plates of intermediate length did not shed regular vortex streets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    103
    Citations
    NaN
    KQI
    []