Phonon-Mediated Long-Range Attractive Interaction in One-Dimensional Cuprates.

2021 
Establishing a minimal microscopic model for cuprates is a key step towards the elucidation of a high-$T_c$ mechanism. By a quantitative comparison with a recent \emph{in situ} angle-resolved photoemission spectroscopy measurement in doped 1D cuprate chains, our simulation identifies a crucial contribution from long-range electron-phonon coupling beyond standard Hubbard models. Using reasonable ranges of coupling strengths and phonon energies, we obtain a strong attractive interaction between neighboring electrons, whose strength is comparable to experimental observations. Nonlocal couplings play a significant role in the mediation of neighboring interactions. Considering the structural and chemical similarity between 1D and 2D cuprate materials, this minimal model with long-range electron-phonon coupling will provide important new insights on cuprate high-$T_C$ superconductivity and related quantum phases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []