The Baldwin Effect and Black Hole Accretion: A Spectral Principal Component Analysis of a Complete QSO Sample

2002 
A unique set of UV-optical spectrograms of 22 low redshift QSOs are investigated using principal component analysis. We find three significant principal components over the broad wavelength range from Ly\alpha to H\alpha. They together account for about 78% of the sample intrinsic variance. We present strong arguments that the first principal component represents the Baldwin effect, relating equivalent widths to the luminosity (i.e. accretion rate), but only emission-line cores are involved. The second component represents continuum variations, probably dominated by intrinsic reddening. The third principal component directly relates QSO UV properties to the optical principal component 1 found by Boroson & Green (1992). It is the primary cause of scatter in the Baldwin relationships. It is also directly related to broad emission-line width and soft X-ray spectral index, and therefore probably driven by Eddington accretion ratio. We demonstrate how Baldwin relationships can be derived using our first principal component, virtually eliminating the scatter caused by the third principal component. This rekindles the hope that the Baldwin relationships can be used for cosmological study.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    76
    Citations
    NaN
    KQI
    []