Accelerating the computation for real-time application of the sinc function using graphics processing units

2020 
In magnetic resonance imaging, the fidelity of image reconstruction is an important criterion. It has been suggested that the infinite-extent sinc kernel is the ideal interpolation kernel for ensuring the reconstruction quality of non-Cartesian trajectories. However, the application of the sinc function has been limited owing to its computational overheads. Recently, graphics processing units (GPUs) have been employed as fast computation tools because of their efficient and versatile parallel computation abilities. We implemented an accelerated convolution function with the sinc kernel using GPUs computing and evaluated the reconstruction performance. The computation time was significantly improved: Computation using the proposed method was approximately 270 times faster than that on a central processing unit (CPU) and approximately 4.6 times faster than that on a CPU optimized by level-3 Basic Linear Algebra Subprograms. The images reconstructed using the fast sinc function exhibited no adverse errors at all matrix sizes (resolutions). The total reconstruction time was approximately 0.3–3 s for all matrices, indicating that the sinc function could be a practical option for image reconstruction. Ultimately, its application would present a fundamental improvement to the performance of image reconstruction, and the GPU implementation of the convolution function with the sinc kernel could resolve various challenges in image data processing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    1
    Citations
    NaN
    KQI
    []