Host-associated phages disperse across the extraterrestrial analogue Antarctica

2021 
Extreme Antarctic conditions provide one of the closest analogues of extraterrestrial environments. Since air and snow samples especially from polar regions yield DNA amounts in the lower picogram range, binning of prokaryotic genomes is challenging and renders studying the dispersal of biological entities across these environments difficult. Here, we hypothesized that dispersal of host-associated bacteriophages (adsorbed, replicating or prophages) across the Antarctic continent can be tracked via their genetic signatures and benefits our understanding of virus and host dispersal across long distances. Phage genome fragments (PGFs) reconstructed from surface snow metagenomes of three Antarctic stations were assigned to four host genomes, mainly Betaproteobacteria including Ralstonia spp. Betaproteobacteria of this genus have been found in Antarctic snow as well as on space-related equipment. We reconstructed the complete genome of a temperate phage with near-complete alignment to a prophage in the reference genome of Ralstonia pickettii 12D. PGFs from different stations were related to each other at the genus level and matched similar hosts. Metagenomic read mapping and nucleotide polymorphism analysis revealed a wide dispersal of highly identical PGFs, 13 of which appeared in seawater from the Western Antarctic Peninsula with up to 5538 km to the snow sampling stations. Our results suggest that host-associated phages, especially of Ralstonia sp. disperse over long distances despite harsh conditions of the Antarctic continent. Due to the additional identification of 14 phages associated with two R. pickettii draft genomes isolated from space equipment, we conclude implications for the spread of biological contaminants in extraterrestrial settings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    111
    References
    0
    Citations
    NaN
    KQI
    []