Ubiquitin-specific protease 7 mediates platelet-derived growth factor-induced pulmonary arterial smooth muscle cells proliferation.

2021 
Pulmonary arterial hypertension is a devastating pulmonary vascular disease, in which the pathogenesis is complicated and unclear. Pulmonary arterial smooth muscle cells (PASMCs) proliferation is a key pathological feature of pulmonary arterial hypertension. It has been shown that ubiquitin-specific protease 7 (USP7) is involved in cancer cell proliferation via deubiquitinating and stabilizing E3 ubiquitin ligase mouse double minute 2 (MDM2). However, the effect of USP7 and MDM2 on platelet-derived growth factor (PDGF)-induced PASMCs proliferation is uncertain. This study aims to explore this issue. Our results indicated that PDGF up-regulated USP7 protein expression and stimulated PASMCs proliferation; this was accompanied with the increase of MDM2, forkhead box O4 (FoxO4) reduction and elevation of CyclinD1. While prior transfection of USP7 siRNA blocked PDGF-induced MDM2 up-regulation, FoxO4 down-regulation, increase of CyclinD1 and cell proliferation. Pre-depletion of MDM2 by siRNA transfection reversed PDGF-induced reduction of FoxO4, up-regulation of CyclinD1 and PASMCs proliferation. Furthermore, pre-treatment of cells with proteasome inhibitor MG-132 also abolished PDGF-induced FoxO4 reduction, CyclinD1 elevation and cell proliferation. Our study suggests that USP7 up-regulates MDM2, which facilitates FoxO4 ubiquitinated degradation, and subsequently increases the expression of CyclinD1 to mediate PDGF-induced PASMCs proliferation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []