Pharmacological characterization of GSK1004723, a novel, long‐acting antagonist at histamine H1 and H3 receptors

2011 
BACKGROUND AND PURPOSE Preclinical pharmacological characterization of GSK1004723, a novel, dual histamine H1 and H3 receptor antagonist. EXPERIMENTAL APPROACH GSK1004723 was characterized in vitro and in vivo using methods that included radioligand binding, intracellular calcium mobilization, cAMP production, GTPγS binding, superfused human bronchus and guinea pig whole body plethysmography. KEY RESULTS In cell membranes over-expressing human recombinant H1 and H3 receptors, GSK1004723 displayed high affinity, competitive binding (H1 pKi = 10.2; H3 pKi = 10.6). In addition, GSK1004723 demonstrated slow dissociation from both receptors with a t1/2 of 1.2 and 1.5 h for H1 and H3 respectively. GSK1004723 specifically antagonized H1 receptor mediated increases in intracellular calcium and H3 receptor mediated increases in GTPγS binding. The antagonism exerted was retained after cell washing, consistent with slow dissociation from H1 and H3 receptors. Duration of action was further evaluated using superfused human bronchus preparations. GSK1004723 (100 nmol·L−1) reversed an established contractile response to histamine. When GSK1004723 was removed from the perfusate, only 20% recovery of the histamine response was observed over 10 h. Moreover, 21 h post-exposure to GSK1004723 there remained almost complete antagonism of responses to histamine. In vivo pharmacology was studied in conscious guinea pigs in which nasal congestion induced by intranasal histamine was measured indirectly (plethysmography). GSK1004723 (0.1 and 1 mg·mL−1 intranasal) antagonized the histamine-induced response with a duration of up to 72 h. CONCLUSIONS AND IMPLICATIONS GSK1004723 is a potent and selective histamine H1 and H3 receptor antagonist with a long duration of action and represents a potential novel therapy for allergic rhinitis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    39
    Citations
    NaN
    KQI
    []