Focus Shaping of High Numerical Aperture Lens using Physics-assisted Artificial Neural Networks

2021 
We present a physics-assisted artificial neural network (PhyANN) scheme to efficiently achieve focus shaping of high numerical aperture lens using a diffractive optical element (DOE) divided into a series of annular regions with fixed widths. Unlike the conventional ANN, the PhyANN does not require the training using labeled data, and instead output the transmission coefficients of each annular region of the DOE by fitting weights of networks to minimize the delicately designed loss function in term of focus profiles. Several focus shapes including sub-diffraction spot, flattop spot, optical needle, and multi-focus region are successfully obtained. For instance, we achieve an optical needle with 10λ depth of focus, 0.41λ lateral resolution beyond diffraction limit and high flatness of almost the same intensity distribution. Compared to typical particle swarm optimization algorithm, the PhyANN has an advantage in DOE design that generates three-dimensional focus profile. Further, the hyperparameters of the proposed PhyANN scheme are also discussed. It is expected that the obtained results benefit various applications including super-resolution imaging, optical trapping, optical lithography and so on.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    1
    Citations
    NaN
    KQI
    []