Carbon Cycling and Habitability of Massive Earth-like Exoplanets

2021 
As the number of detected rocky extrasolar planets increases, the question of whether their surfaces could be habitable is becoming more pertinent. On Earth, the long-term carbonate silicate cycle is able to regulate surface temperatures over timescales larger than one million years. Elevated temperatures enhance weathering, removing CO$_2$ from the atmosphere, which is subducted into the mantle. At mid-ocean ridges, CO$_2$ is supplied to the atmosphere from the interior. The carbon degassing flux is controlled by the melting depth beneath mid-ocean ridges and the spreading rate, influenced by the pressure- and temperature-dependent mantle viscosity. The influences of temperature and pressure on mantle degassing become increasingly important for more massive planets. Here, we couple a thermal evolution model of Earth-like planets of different masses with a model of the long-term carbon cycle and assess their surface temperature evolution. We find that the spreading rate at 4.5 Gyr increases with planetary mass up to 3 $M_\oplus$, since the temperature-dependence of viscosity dominates over its pressure-dependency. For higher mass planets, pressure-dependence dominates and the plates slow down. In addition, the effective melting depth at 4.5 Gyr as a function of planetary mass has its maximum at 3 $M_\oplus$. Altogether, at 4.5 Gyr, the degassing rate and therefore surface temperature have their maximum at 3 $M_\oplus$. This work emphasizes that both age and mass should be considered when predicting the habitability of exoplanets. Despite these effects, the long-term carbon cycle remains an effective mechanism that regulates the surface temperature of massive Earth-like planets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    0
    Citations
    NaN
    KQI
    []