Household Members Do Not Contact Each Other at Random: Implications for Infectious Disease Modelling

2017 
Airborne infectious diseases such as influenza are primarily transmitted from human to human by means of social contacts and thus easily spread within households. Epidemic models, used to gain insight in infectious disease spread and control, typically rely on the assumption of random mixing within households. Until now there was no direct empirical evidence to support this assumption. Here, we present the first social contact survey specifically designed to study contact networks within households. The survey was conducted in Belgium (Flanders and Brussels) in 2010-2011. We analyzed data from 318 households totaling 1266 individuals with household sizes ranging from 2 to 7 members. Exponential-family random graph models (ERGMs) were fitted to the within-household contact networks to reveal the processes driving contact between household members, both on weekdays and weekends. The ERGMs showed a high degree of clustering and, specifically on weekdays, decreasing connectedness with increasing household size. Furthermore, we found that the odds of a contact between father and child is smaller than for any other pair except for older siblings. Epidemic simulation results suggest that within-household contact density is the main driver of differences in epidemic spread between complete and empirical-based household contact networks. The homogeneous mixing assumption may therefore be an adequate characterization of the within-household contact structure for the purpose of epidemic simulation. However, ignoring the contact density when inferring from an epidemic model will result in biased estimates of within-household transmission rates. Further research on the implementation of within-household contact networks in epidemic models is necessary.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    3
    Citations
    NaN
    KQI
    []