Furosemide reduces insulin release by inhibition of Cl sup minus and Ca sup 2+ fluxes in. beta. -cells

1988 
The effect of furosemide on insulin release, glucose oxidation, {sup 36}Cl{sup {minus}} fluxes, and {sup 45}Ca{sup 2+} uptake was studied in isolated, {beta}-cell-rich pancreatic islets from ob/ob mice. Low concentrations of furosemide (0.01-0.1 mM) reduced the glucose-induced insulin release, whereas high doses (1-10 mM) increased basal and glucose-induced release. Furosemide at concentrations that reduced glucose-induced insulin release did not affect the islet production of {sup 14}CO{sub 2} from D-(U-{sup 14}C)glucose. The influx rate and equilibrium content of {sup 36}Cl{sup {minus}} were reduced by furosemide, whereas the basal and glucose-stimulated {sup 36}Cl{sup {minus}} efflux rates were unaffected. The glucose-induced uptake of {sup 45}Ca{sup 2+} was inhibited by furosemide. It is suggested that the diabetogenic action of furosemide may be due, at least in part, to direct inhibition of insulin release from the pancreatic {beta}-cells. This may be caused primarily by inhibition of an inwardly directed Cl{sup {minus}} pump, leading to a reduced transmembrane electrochemical gradient for chloride in the {beta}-cells. This reduced gradient in combination with unaltered Cl{sup {minus}} permeability may lead to decreased total outward Cl{sup {minus}} transport, a factor associated with stimulated calcium uptake and insulin release.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []