Whole-scale neurobehavioral assessments of photothrombotic ischemia in freely moving mice

2015 
Abstract Background Neurobehavioral assessments have been considered as an essential component of preclinical research in ischemic stroke. However, real-time neurobehavioral evaluation is seldom applied during ischemia induction as it is usually accompanied with anesthesia. New method We induced photothrombosis in freely moving mice after one-week recovery from cannula implantation surgeries. After rose bengal (RB) injection (100 mg/kg, i.p.), photothrombosis was induced in freely moving mice by 473 nm laser irradiation through the cannulas implanted into unilateral primary motor cortex beforehand. Mice received nimodipine (15 mg/kg, i.p.), a widely used anti-ischemic agent, or vehicle before irradiation. Motor coordination and equilibrium were evaluated by rotarod and rung walk tests throughout the whole process of ischemia. Endurance capacity was assessed by treadmill at 1 day and 7 days after irradiation. Mice were decapitated at different time points post irradiation for TTC (2,3,5-triphenyltetrazolium chloride) staining. Results Consistent with the results of TTC staining, motor deficits firstly occurred at 15-min post irradiation and aggravated 1-day later, while the capacity improved 3-days later and partially recovered 7-days post irradiation. And, the recovery process was accelerated by nimodipine application. Comparison with existing methods This method established a precise linkage between focal brain ischemia development and neurobehavioral deficits throughout a full scale of photothrombosis, which avoided the confounding factors of anesthetics and surgeries on neurobehavioral assessments, as infarct was induced in freely moving mice. Conclusions This method with high temporal and spatial resolution will be an optimal model for neurobehavioral evaluation in preclinical anti-ischemic drug screening.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    18
    Citations
    NaN
    KQI
    []