An unusual nonlinear system in the magnetosphere: A possible driver for auroral pulsations

1991 
Many aspects of the relation between spatial and temporal structures in morningside aurorae can be explained with the aid of a nonlinear model that describes the interactions between energetic electrons and VLF waves. The simplest form of the model consists of three differential equations, with time derivatives generated in reference frames moving with either the energetic electrons, the cold plasma, or the VLF waves that interact with the energetic electrons. Although unstable solutions that could explain the origin of spatial structures are not found, the existence of spatial structures having sufficiently fine scales can provide a repetitive perturbation that maintains the temporal variations. An analysis of the behavior of solutions of the nonlinear system reveals that a strange attractor does not occur in the autonomous system; but when the repetitive perturbations are regarded as external periodic forcing terms, unusual forms of nonlinear behavior are revealed. If the frequencies of the forcing terms are not commensurate with the natural periods of the system, the solutions present some of the characteristics of deterministic chaos. The nearest analogy is a driven nonlinear oscillator with asymmetric damping. However, because of the stiffness of the system, even those solutions that are not truly chaotic (in the commonly accepted usage) will be indistinguishable from chaos over tens to hundreds of pulsation cycles. In certain cases, when damping terms are reduced to zero, the system displays a form of behavior with many of the important characteristics of chaos, but the phase trajectories do not appear to be bounded. Variation of the forcing amplitude produces regions of unbounded phase trajectories, which do not approach stable limit cycles, separated by narrow regions of classical period doubling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    21
    Citations
    NaN
    KQI
    []