Remote detection of light tolerance in Basil through frequency and transient analysis of light induced fluorescence

2016 
A new method for remote detection of light tolerance in a greenhouse environment.The dynamics of light induced fluorescence indicates photosynthetic performance.Increased light intensity reduces the complexity of the dynamics.Light intensity shifts the plants dynamic behaviour in the frequency domain.Light induced stress reduces the complexity of the dynamics. Artificial lighting control in industrial scale greenhouses has a large potential for increased crop yields, energy savings and timing in greenhouse production. One key component in controlling greenhouse lighting is continuous and accurate measurement of plant performance. This paper presents a novel concept for remote detection of plant performance based on the dynamics of chlorophyll fluorescence (CF) signals induced by a LED-lamp. The dynamic properties of the CF is studied through fitting a linear dynamic model to CF data. The hypothesis is that changes in photochemistry affects the fluorescence dynamics and can therefore be detected as changes in the model parameters and properties. The dynamics was studied in experiments using a sinusoidal varying light intensity (period 60s) or step changes (step length 300s). Experiments were performed in a controlled light environment on Basil plants acclimated to different light intensities. It is concluded that the capacity to use a certain light intensity is reflected by how fast and how complex the dynamics are. In particular, the results show that optimal model order is a potential indicator of light tolerance in plants that could be a valuable feedback signal for lighting control in greenhouses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    10
    Citations
    NaN
    KQI
    []