Photothermally Enabled Pyro-Catalysis of a BaTiO3 Nanoparticle Composite Membrane at the Liquid/Air Interface

2018 
This paper reports the highly efficient pyroelectric nanomaterial-based catalytic degradation of waste dye under rapid temperature oscillation, which was achieved by periodical solar irradiation on a porous pyroelectric membrane that was floating at the liquid/air interface. Such a membrane consists of the light-to-heat conversion carbon black film as the top layer and the porous poly(vinylidene difluoride) (PVDF) film embedded with pyroelectric barium titanate (BaTiO3) nanoparticles (BTO NPs) as the bottom layer. By using an optical chopper, solar light can be modulated to periodically irradiate on the floating membrane. Because of the photothermal effect and low thermal conductivity of the PVDF polymer, the generated heat is localized at the surface of the membrane and substantially increases the surface temperature within a short period of time. When the solar light is blocked by the chopper, interfacial evaporation through the porous membrane along with convective air cooling and radiative cooling lea...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    25
    Citations
    NaN
    KQI
    []