Expression optimization and biochemical properties of two glycosyl hydrolase family 3 beta-glucosidases

2015 
Abstract The β-glucosidases from Saccharomycopsis fibuligera (SfBGL1) and Trichoderma reesei (TrBGL1) were cloned and expressed in Pichia pastoris . Methanol concentration and pH significantly affected the production. The combined effects of the two factors were optimized by using the response surface method, resulting in a 137% and 84% increase in rTrBGL1 and rSfBGL1 yield compared to single-factor experiment. Structure and biochemical properties of the two enzyme were investigated and compared. They belong to glycosyl hydrolase family 3 and exhibit significant hydrolysis activity and low-level transglycosylation activity. The two enzymes show similar substrate affinity and ion-tolerance, and both of them can be activated by Cr 6+ , Mn 2+ and Fe 2+ . The rSfBGL1 has greater catalytic speed, higher specific activity and acid-tolerance than rTrBGL1, but rTrBGL1 is more thermostable and has higher optimal temperature than rSfBGL1. This study provides a useful and quick optimal method for recombinant enzyme production and makes a valuable comparison of biochemical properties, which opens important avenues of exploration for relationship between structure and function and further practical applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    9
    Citations
    NaN
    KQI
    []