EIF3H orchestrates Hippo pathway-mediated oncogenesis via catalytic control of YAP stability.

2020 
EIF3H is presumed to be a critical translational initiation factor. Here our unbiased screening for tumor invasion factors has identified an unexpected role for EIF3H as a deubiquitylating enzyme that dictates breast tumor invasion and metastasis by modulating the Hippo-YAP pathway. EIF3H catalyzed YAP for deubiquitylation, resulting in its stabilization. Structure-based molecular modelling and simulations coupled with biochemical characterization unveiled a unique catalytic mechanism for EIF3H in dissociating polyubiquitin chains from YAP through a catalytic triad consisting of Asp90, Asp91, and Gln121. Trp119 and Tyr 140 on EIF3H directly interacted with the N-terminal region of YAP1, facilitating complex formation of EIF3H and YAP1 for YAP1 deubiquitylation. Stabilization of YAP via elevated EIF3H promoted tumor invasion and metastasis. Interference of EIF3H-mediated YAP deubiquitylation blocked YAP-induced tumor progression and metastasis in breast cancer models. These findings point to a critical role for YAP regulation by EIF3H in tumor invasion and metastasis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    10
    Citations
    NaN
    KQI
    []