Controlled Activation of Protein Rotational Dynamics using Smart Hydrogel Tethering

2014 
Stimulus-responsive hydrogel materials that stabilize and control protein dynamics have the potential to enable a range of applications that take advantage of the inherent specificity and catalytic efficiencies of proteins. Here we describe the modular construction of a hydrogel using an engineered calmodulin (CaM) within a poly(ethylene glycol) (PEG) matrix that involves the reversible tethering of proteins through an engineered CaM-binding sequence. For these measurements, maltose binding protein (MBP) was isotopically labeled with 13C and 15N, permitting dynamic structural measurements using TROSY-HSQC NMR spectroscopy. The protein dynamics is suppressed upon initial formation of hydrogels, with a concomitant increase in protein stability. Relaxation of the hydrogel matrix following transient heating results in enhanced protein dynamics and resolution of substrate-induced large-amplitude domain rearrangements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    3
    Citations
    NaN
    KQI
    []