Fokker-Planck and Langevin analyses of noise accompanying the amplification of optical pulses in semiconductor optical amplifiers

2005 
The Fokker-Planck approach is used to study the statistics of an optical pulse propagating in semiconductor optical amplifiers in which the amplified spontaneous emission noise dominates. The probability density functions (pdfs) of the pulse peak sample are calculated for different saturation levels. Analytical results are possible for an ideal linear amplifier and when the simplest first-order approximation for nonlinear amplification is used. In other cases, we solve numerically the Fokker-Planck equation and the appropriate Langevin equation. Multicanonical Monte Carlo simulations ensure efficient calculations of the pdfs whose high- and low-power tails deviate from noncentral chi-square statistics for moderate and deep saturation levels, thus implying that the electric field process is not Gaussian.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    7
    Citations
    NaN
    KQI
    []