Flip-flop of doxorubicin across erythrocyte and lipid membranes
1997
Abstract Doxorubicin, an anticancer drug, is extruded from multidrug resistant (MDR) cells and from the brain by P-glycoprotein located in the plasma membrane and the blood–brain barrier, respectively. MDR-type drugs are hydrophobic and, as such, enter cells by diffusion through the membrane without the requirement for a specific transporter. The apparent contradiction between the presumably free influx of MDR-type drugs into MDR cells and the efficient removal of the drugs by P-glycoprotein, an enzyme with a limited ATPase activity, prompted us to examine the mechanism of passive transport within the membrane. The kinetics of doxorubicin transport demonstrated the presence of two similar sized drug pools located in the two leaflets of the membrane. The transbilayer movement of doxorubicin occurred by a flip-flop mechanism of the drug between the two membrane leaflets. At 37°, the flip-flop exhibited a half-life of 0.7 min, in both erythrocyte membranes and cholesterol-containing lipid membranes. The flip-flop was inhibited by cholesterol and accelerated by high temperatures and the fluidizer benzyl alcohol. The rate of doxorubicin flux across membranes is determined by both the massive binding to the membranes and the slow flip-flop across the membrane. The long residence-time of the drug in the inner leaflet of the plasma membrane allows P-glycoprotein a better opportunity to remove it from the cell.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
20
References
72
Citations
NaN
KQI