Inhibition of acute pulmonary and systemic inflammation by 1,7-dimethylxanthine.

2010 
Abstract The nuclear enzyme poly(ADP-ribose) polymerse-1 (PARP-1) has previously been reported to play an important role in lipopolysaccharide (LPS)-induced pulmonary inflammation and is highly activated in COPD patients. In the present study, the anti-inflammatory efficacy of a previously identified poly(ADP-ribose) polymerase-1 (PARP-1) inhibiting caffeine metabolite, 1,7-dimethylxanthine, was both in vivo as well as ex vivo evaluated. Orally administered 1,7-dimethylxanthine significantly attenuated lung myeloperoxidase-levels, transcription of IL-6, TNF-α, MIP1α and MIP2 genes as well as PAR-polymer formation in a mouse model of intratracheally LPS-induced acute pulmonary inflammation. Serum amyloid P component and plasma IL-6 were also lowered in 1,7-dimethylxanthine treated mice, indicating a reduced systemic inflammatory response. In addition, at 24 h after LPS administration anti-inflammatory effects of 1,7-dimethylxanthine appeared more pronounced than those of the orally administered PARP-1 inhibitor 3-aminobenzamide. In the second model, in blood of COPD-patients and healthy controls ex vivo pre-incubated with a physiological concentration of 1,7-dimethylxanthine (10 µM), LPS-induced production of the cytokines IL-6 and TNF-α was significantly suppressed. 1,7-Dimethylxanthine exerts anti-inflammatory effects, both in vivo mouse as well as ex vivo human. These results suggest that the PARP-1 inhibiting caffeine metabolite 1,7-dimethylxanthine may have therapeutic potential in pulmonary inflammatory diseases such as COPD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    10
    Citations
    NaN
    KQI
    []