Contributions to accuracy improvement of simultaneous ICP atomic emission spectrometry using multi-line measurements of analyte and internal standard elements : Applications for the analysis of permalloy
1998
For successful application of simultaneous ICP atomic emission spectrometry for major component determinations in multi-component materials the accuracy of the method has to be improved. As a contribution to solve this problem a combined procedure for multi-component standard sample preparation, optimum calibration and different variations of internal standard corrections is described. Variance-weighted multi-line calibrations give most accurate results. Internal standard corrections are effective, if the time-dependent spectral line intensity fluctuations of the standard and the analyte elements are well correlated. Their sensitivities against some responsible device parameter variations are investigated. On the basis of multi-line measurements of the analyte and internal standard elements a “group-selected internal standard correction” (GS-ISC) method is applied and results in relative errors of less than 1% even for extreme fluctuations of the raw intensities. For rapid routine determination methods of materials with variable element compositions the added line intensities of the internal standard element can be used to correct the added analyte line raw intensities (“intensity addition internal standard correction” (IA-ISC) method). These accuracy optimization procedures are applied for the analysis of the soft magnetic material permalloy using the internal standard element In.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
9
Citations
NaN
KQI