Anticholinergic effect of 2-aminopyridine and its sulfonylcarbamide derivatives on electromechanical activity in guinea pig atrium

2007 
The aim of the study was to investigate an action of 2-aminopyridine and its new sulfonylcarbamide derivatives 2-AP21, 2-AP22, 2-AP26, and 2-AP27 (10–5–10–3 M) on carbachol-induced shortening of action potential duration and reduction of contraction force in guinea pig atrial muscles. Experiments were carried out using a standard method of myocardium electromechanical activity registration. Under control conditions (perfusion of atrial strips with Tyrode solution), an average of action potential duration, measured at 90% (AP90) and 50% (AP50) of repolarization, were 112.32±6.07 ms and 50.21±3.25 ms, (n=19), respectively, and contraction force was of 1.42±0.28 mN (n=20). Carbachol (10–6M), an agonist of muscarinic acetylcholine receptor and activator of KAch channels, markedly decreased AP90 to 35.31±4.21%, AP50 – to 26.42±2.66% (n=19) (P >2-AP26>2-AP22³2-AP>2-AP21. 2-aminopyridine derivative 2-AP27, containing 4-toluolsulfonylcarbamide fragment and 4-nitrobenzyl radical at quaternized nitrogen of the pyridine, had the most potent anticholinergic effect on AP90 (936.60±178.23%). 2-AP22 and 2-AP26 (containing methyl or allyl radicals at quaternized nitrogen of the pyridine, respectively) showed a much weaker anticholinergic effect (231.39±28.48% and 318.25±63.81%, respectively). The weakest anticholinergic effect (63.59±34.38%) was induced by 2-aminopyridine derivative 2-AP21, which had non-quaternized nitrogen of the pyridine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []