Directed biosynthesis of fluorinated polyketides

2021 
Modification of polyketides with fluorine offers a promising approach to develop new pharmaceuticals. While synthetic chemical methods for site-specific incorporation of fluorine in complex molecules have improved in recent years, approaches for the direct biosynthetic fluorination of natural compounds are still rare. Herein, we present a broadly applicable approach for site-specific, biocatalytic derivatization of polyketides with fluorine. Specifically, we exchanged the native acyltransferase domain (AT) of a polyketide synthase (PKS), which acts as the gatekeeper for selection of extender units, with an evolutionarily related but substrate tolerant domain from metazoan type I fatty acid synthase (FAS). The resulting PKS/FAS hybrid can utilize fluoromalonyl coenzyme A and fluoromethylmalonyl coenzyme A for polyketide chain extension, introducing fluorine or fluoro-methyl disubstitutions in polyketide scaffolds. Addition of a fluorine atom is often a decisive factor toward developing superior properties in next-generation antibiotics, including the macrolide solithromycin. We demonstrate the feasibility of our approach in the semisynthesis of a fluorinated derivative of the macrolide antibiotic YC-17.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []