Synthesis and characterization of Merrifield resin and graphene oxide supported air stable oxidovanadium(IV) radical complexes for the catalytic oxidation of light aliphatic alcohols

2021 
Abstract Imidazole modified Merrifield resin and (3-Aminopropyl)trimethoxysilane-modified graphene oxide supported oxidovanadium(IV) radical complexes PS-im-[VIVO(tbnC )(acac)] (1) and GO-ATPMS-[VIVO(tbnO )(acac)] (2) were synthesized and characterized by various spectroscopic, thermal and chemical techniques. The radical nature of 1 and 2 was established by trapping experiments in addition to EPR spectroscopy. In EPR analysis, complex 2 shows a prominent signal with g = 2.005, characteristic of an oxygen-centered radical. The neat complex [VIVO(tbnC )(acac)] (A) displays an EPR signal at g = 2.0025, typical of carbon-centered radical. On the contrary, such characteristic EPR signal of a radical is absent in complex 1, presumably due to spin pairing. XPS analysis confirms the +4 oxidation state of vanadium in fresh as well as recycled catalysts 1 and 2. Both the supported complexes show excellent catalytic activity towards a variety of aliphatic alcohols. Comparatively, the polymer-supported complex displays better substrate conversion than the graphene oxide-supported complex. However, 2 shows better selectivity towards aldehydes, whereas carboxylic acids are obtained as major products in the presence of 1. Interestingly, catalyst 1 is almost equally effective towards all the examined alcohols, but its effectiveness reduces slightly for longer carbon chain alcohols. On the other hand, catalyst 2 shows better substrate conversion for the alcohols with a longer carbon chain. During the catalytic oxidation of alcohols, the active intermediate species oxidoperoxidovanadium(V) complex ([VO(O2)(tbn)(acac-H)]−) was detected by FT-IR, UV–vis, and LC–MS analysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    108
    References
    0
    Citations
    NaN
    KQI
    []