First-Principles Study of Chemical Mixtures of CaCl2 and MgCl2 Hydrates for Optimized Seasonal Heat Storage

2017 
Chloride-based salt hydrates form a promising class of thermochemical materials (TCMs), having high storage capacity and fast kinetics. In the charging cycles of these hydrates however hydrolysis might appear along with dehydration. The HCl produced during the hydrolysis degrades and corrodes the storage system. Our GGA-DFT results show that the enthalpy charge during proton formation (an important step in hydrolysis) is much higher for CaCl2·2H2O (33.75 kcal/mol) than for MgCl2·2H2O (19.55 kcal/mol). This is a strong indicator that hydrolysis can be minimized by appropriate chemical mixing of CaCl2 and Mg Cl2 hydrates, which is also confirmed by recent experimental studies. GGA-DFT calculations were performed to obtain and analyze the optimized structures, charge distributions, bonding indicators and harmonic frequencies of various chemical mixtures hydrates and compared them to their elementary salts hydrates. We have further assessed the equilibrium products concentration of dehydration/hydrolysis of t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    13
    Citations
    NaN
    KQI
    []