An environment-friendly phosphate chemical conversion coating on novel Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys with remarkable corrosion protection

2018 
Abstract An environment-friendly phosphate chemical conversion (PCC) coating has been deposited on novel LAT971 (Mg-9 wt%Li-7 wt%Al-1 wt%Sn) and LATZ9531 (Mg-9 wt%Li-5 wt%Al-3 wt%Sn-1 wt%Zn) alloys for improving their corrosion resistance. A dense and homogeneous flower like morphology (∼30 μm thick) was observed on the PCC coated Mg-Li based alloys. The presence of calcium hydrogen phosphate hydrate, tricalcium phosphate and trimagnesium phosphate were confirmed from the X-ray diffraction and X-ray photoelectron spectroscopy analysis. A lower corrosion current density of 6.74 × 10 −7  mA/cm 2 and 5.39 × 10 −7  mA/cm 2 was obtained for PCC coated alloys in 3.5% NaCl aqueous solution than that of uncoated LAT971 (0.82 mA/cm 2 ) and LATZ9531 (0.34 mA/cm 2 ) alloys, respectively, which offers corrosion protection efficiency of >99%. Electrochemical impedance spectroscopy (EIS) has revealed that the inner PCC coating (at coating/substrate interface) delay the direct contact between electrolyte and substrate, which offered higher charge transfer resistance (>4 orders of magnitude) than that of uncoated alloys. Thus, the PCC coating provides an effective corrosion protection to the ultra-lightweight LAT971 and LATZ9531 alloys surface and may be helpful in proving good anchoring with the top organic coatings or paints.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    16
    Citations
    NaN
    KQI
    []