Using Kriging incorporated with wind direction to investigate ground-level PM2.5 concentration

2021 
Abstract Conventional interpolation methods, such as spatial averaging, nearest neighbor, inverse distance weight and ordinary kriging (OK); for estimating the spatial distribution of ground-level particulate matter (PM) data, do not account for the wind direction for estimating the spatial distribution of PM2.5. In this work, an interpolation algorithm, Win-OK accounting for the wind direction, is developed. In contrast to ordinary kriging where all locations (irrespective of the wind direction) in the vicinity of a site is considered, the new algorithm (Win-OK) predicts the value at a certain location based on the measured values at locations upwind as determined by the wind direction. This new methodology, Win-OK is validated by applying it to analyze the hourly spatial distribution of ground-level PM2.5 concentrations during Chinese New Year and Chinese National Day in 2017 in Xinxiang city, China. The performance of OK and Win-OK are compared by using them to build PM2.5 concentration heat-maps. A “leave-one-out” cross validation methodology is used to calculate the root-mean-square error (RMSE) and standard deviation for evaluating both algorithms. The results show that OK sometimes gives an extremely high RMSE value using a Gaussian semi-variance model, and the standard deviation significantly deviates from the measured values. Win-OK was found to more accurately predict the PM2.5 spatial distribution in a specific sector. The performance of Win-OK is more stable than OK as established by comparing the calculated RMSE and standard deviation from predictions of both algorithms. Win-OK with a spherical semi-variance model is the most accurate method investigated here for deriving the spatial distribution of ground-level PM2.5. The new algorithm developed here could improve the prediction accuracy of PM2.5 spatial distribution by considering the effect of wind direction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    4
    Citations
    NaN
    KQI
    []