Surface functionalized composite nanofibers for efficient removal of arsenic from aqueous solutions

2017 
Abstract: A novel composites nanofiber was synthesized based on PAN-CNT/TiO 2 -NH 2 nanofibers using electrospinning technique followed by chemical modification of TiO 2 NPs. PAN-CNT/TiO 2 -NH 2 nanofiber were characterized by XRD, FTIR, SEM, and TEM. The effects of various experimental parameters such as initial concentration, contact time, and solution pH on As removal were investigated. The maximum adsorption capacity at pH 2 for As(III) and As(V) is 251 mg/g and 249 mg/g, respectively, which is much higher than most of the reported adsorbents. The adsorption equilibrium reached within 20 and 60 min as the initial solution concentration increased from 10 to 100 mg/L, and the data fitted well using the linear and nonlinear pseudo first and second order model. Isotherm data fitted well to the linear and nonlinear Langmuir, Freundlich, and Redlich-Peterson isotherm adsorption model. Desorption results showed that the adsorption capacity can remain up to 70% after 5 times usage. This work provides a simple and an efficient method for removing arsenic from aqueous solution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    54
    Citations
    NaN
    KQI
    []