Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules

2018 
Novel photovoltaic technologies such as perovskites hold the promise of a reduced levelized cost of electricity, but the low-cost potential depends on the ability to scale-up solution-based deposition. So far, complex fluid dynamics have limited the solution deposition of uniform pinhole-free organic–inorganic perovskite thin films over large areas. Here, we show that very small amounts (tens of parts per million) of surfactants (for example, l-α-Phosphatidylcholine) dramatically alter the fluid drying dynamics and increase the adhesion of the perovskite ink to the underlying non-wetting charge transport layer. The additives enable blading of smooth perovskite films at a coating rate of 180 m h–1 with root-mean-square roughness of 14.5 nm over 1 cm. The surfactants also passivate charge traps, resulting in efficiencies over 20% for small-area solar cells. Fast blading in air of perovskite films results in stabilized module efficiencies of 15.3% and 14.6% measured at aperture areas of 33.0 cm2 and 57.2 cm2, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    346
    Citations
    NaN
    KQI
    []